IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v248y2022ics0360544222004935.html
   My bibliography  Save this article

Experimental study of aviation kerosene engine with PJI system

Author

Listed:
  • Wang, Lei
  • Zhao, Zhenfeng
  • Yu, Chuncun
  • Cui, Huasheng

Abstract

The spark-ignition (SI) piston engine has become the main power source for unmanned aerial vehicles owing to its small size and large power/weight ratio. While gasoline is the commonly used fuel in SI engines, it affords poor safety and stability. Aviation kerosene is highly suitable as an alternative to gasoline; however, its high kinematic viscosity and low saturated vapour pressure afford poor evaporation and atomisation in SI engine. Moreover, aviation kerosene has a low octane number, and easy to cause knock, particularly in four-stroke engines. Those issue limits the wide use of kerosene in SI engines. In this study, the pre-chamber jet ignition (PJI) technology is used to suppress the knock of kerosene engine. The combustion characteristics of gasoline-SI, kerosene-SI and kerosene-PJI were compared and analysed. The variation law of indicated mean effective pressure (IMEP) at different speeds is obtained. It is found that PJI system can accelerate the flame propagation speed and shorten the combustion duration, and IMEP can be increased by 10%–27%. The experimental results show that PJI can optimise kerosene combustion to a certain extent and broaden its knock limit in SI engine. It is one of the effective ways to suppress knock in kerosene engine.

Suggested Citation

  • Wang, Lei & Zhao, Zhenfeng & Yu, Chuncun & Cui, Huasheng, 2022. "Experimental study of aviation kerosene engine with PJI system," Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222004935
    DOI: 10.1016/j.energy.2022.123590
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222004935
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Guibin & Ruan, Can & Li, Zilong & Huang, Guan & Zhou, Qiyan & Qian, Yong & Lu, Xingcai, 2020. "Investigation of engine performance for alcohol/kerosene blends as in spark-ignition aviation piston engine," Applied Energy, Elsevier, vol. 268(C).
    2. Wei, Haiqiao & Hua, Jianxiong & Pan, Mingzhang & Feng, Dengquan & Zhou, Lei & Pan, Jiaying, 2018. "Experimental investigation on knocking combustion characteristics of gasoline compression ignition engine," Energy, Elsevier, vol. 143(C), pages 624-633.
    3. Zhen, Xudong & Wang, Yang & Xu, Shuaiqing & Zhu, Yongsheng & Tao, Chengjun & Xu, Tao & Song, Mingzhi, 2012. "The engine knock analysis – An overview," Applied Energy, Elsevier, vol. 92(C), pages 628-636.
    4. Wang, Chenyao & Zhang, Fujun & Wang, Enhua & Yu, Chuncun & Gao, Hongli & Liu, Bolan & Zhao, Zhenfeng & Zhao, Changlu, 2019. "Experimental study on knock suppression of spark-ignition engine fuelled with kerosene via water injection," Applied Energy, Elsevier, vol. 242(C), pages 248-259.
    5. Chen, Longfei & Ding, Shirun & Liu, Haoye & Lu, Yiji & Li, Yanfei & Roskilly, Anthony Paul, 2017. "Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine," Applied Energy, Elsevier, vol. 203(C), pages 91-100.
    6. Lounici, M.S. & Benbellil, M.A. & Loubar, K. & Niculescu, D.C. & Tazerout, M., 2017. "Knock characterization and development of a new knock indicator for dual-fuel engines," Energy, Elsevier, vol. 141(C), pages 2351-2361.
    7. Wei, Haiqiao & Feng, Dengquan & Pan, Jiaying & Shao, Aifang & Pan, Mingzhang, 2017. "Knock characteristics of SI engine fueled with n-butanol in combination with different EGR rate," Energy, Elsevier, vol. 118(C), pages 190-196.
    8. Gentz, Gerald & Gholamisheeri, Masumeh & Toulson, Elisa, 2017. "A study of a turbulent jet ignition system fueled with iso-octane: Pressure trace analysis and combustion visualization," Applied Energy, Elsevier, vol. 189(C), pages 385-394.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chenyao & Zhang, Fujun & Wang, Enhua & Yu, Chuncun & Gao, Hongli & Liu, Bolan & Zhao, Zhenfeng & Zhao, Changlu, 2019. "Experimental study on knock suppression of spark-ignition engine fuelled with kerosene via water injection," Applied Energy, Elsevier, vol. 242(C), pages 248-259.
    2. Meng, Hao & Ji, Changwei & Su, Teng & Yang, Jinxin & Chang, Ke & Xin, Gu & Wang, Shuofeng, 2022. "Analyzing characteristics of knock in a hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 250(C).
    3. Feng, Dengquan & Wei, Haiqiao & Pan, Mingzhang & Zhou, Lei & Hua, Jianxiong, 2018. "Combustion performance of dual-injection using n-butanol direct-injection and gasoline port fuel-injection in a SI engine," Energy, Elsevier, vol. 160(C), pages 573-581.
    4. Shi, Hao & Uddeen, Kalim & An, Yanzhao & Pei, Yiqiang & Johansson, Bengt, 2021. "Multiple spark plugs coupled with pressure sensors: A new approach for knock mechanism study on SI engines," Energy, Elsevier, vol. 227(C).
    5. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid, 2020. "Split diesel injection effect on knocking of natural gas/diesel dual-fuel engine at high load conditions," Applied Energy, Elsevier, vol. 279(C).
    6. Zhou, Lei & Kang, Rui & Wei, Haiqiao & Feng, Dengquan & Hua, Jianxiong & Pan, Jiaying & Chen, Rui, 2018. "Experimental analysis of super-knock occurrence based on a spark ignition engine with high compression ratio," Energy, Elsevier, vol. 165(PB), pages 68-75.
    7. Tornatore, Cinzia & Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi & Valentino, Gerardo & Marchitto, Luca, 2019. "Experimental and numerical study on the influence of cooled EGR on knock tendency, performance and emissions of a downsized spark-ignition engine," Energy, Elsevier, vol. 172(C), pages 968-976.
    8. Jung, Dongwon & Lee, Sejun, 2018. "An investigation on the potential of dedicated exhaust gas recirculation for improving thermal efficiency of stoichiometric and lean spark ignition engine operation," Applied Energy, Elsevier, vol. 228(C), pages 1754-1766.
    9. Zhen, Xudong & Tian, Zhi & Wang, Yang & Xu, Meng & Liu, Daming & Li, Xiaoyan, 2022. "Knock analysis of bio-butanol in TISI engine based on chemical reaction kinetics," Energy, Elsevier, vol. 239(PC).
    10. Meng, Hao & Ji, Changwei & Yang, Jinxin & Chang, Ke & Xin, Gu & Wang, Shuofeng, 2022. "Experimental understanding of the relationship between combustion/flow/flame velocity and knock in a hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 258(C).
    11. Tehseen Johar & Chiu-Fan Hsieh, 2023. "Design Challenges in Hydrogen-Fueled Rotary Engine—A Review," Energies, MDPI, vol. 16(2), pages 1-22, January.
    12. Benajes, J. & Novella, R. & Gomez-Soriano, J. & Martinez-Hernandiz, P.J. & Libert, C. & Dabiri, M., 2019. "Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines," Applied Energy, Elsevier, vol. 248(C), pages 576-588.
    13. Zhao, Zhenfeng & Cui, Huasheng, 2022. "Numerical investigation on combustion processes of an aircraft piston engine fueled with aviation kerosene and gasoline," Energy, Elsevier, vol. 239(PD).
    14. Zhen, Xudong & Wang, Yang, 2013. "Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics," Energy, Elsevier, vol. 59(C), pages 549-558.
    15. Amaral, Lucimar Venâncio & Santos, Nathália Duarte Souza Alvarenga & Roso, Vinícius Rückert & Sebastião, Rita de Cássia de Oliveira & Pujatti, Fabrício José Pacheco, 2021. "Effects of gasoline composition on engine performance, exhaust gases and operational costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Lijia Zhong & Changwen Liu, 2019. "Numerical Analysis of End-Gas Autoignition and Pressure Oscillation in a Downsized SI Engine Using Large Eddy Simulation," Energies, MDPI, vol. 12(20), pages 1-20, October.
    17. La Xiang & Enzhe Song & Yu Ding, 2018. "A Two-Zone Combustion Model for Knocking Prediction of Marine Natural Gas SI Engines," Energies, MDPI, vol. 11(3), pages 1-23, March.
    18. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Wu, Yang & Zhang, Lu & Liu, Fushui, 2019. "Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Guardiola, C. & Pla, B. & Bares, P. & Barbier, A., 2018. "An analysis of the in-cylinder pressure resonance excitation in internal combustion engines," Applied Energy, Elsevier, vol. 228(C), pages 1272-1279.
    20. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222004935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.