IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v241y2022ics0360544221031625.html
   My bibliography  Save this article

Optimal design of heat exchanger network considering the fouling throughout the operating cycle

Author

Listed:
  • Hang, Peng
  • Zhao, Liwen
  • Liu, Guilian

Abstract

A model is established for minimizing the cost of heat exchanger network (HEN) throughout the operating cycle, with fouling, heat exchanger area margin, the location and opening of bypass considered. The Genetic Algorithm (GA) is applied to generate the economically potential structures; the neural network is used to predict the relationship of heat exchange area and cost. The flow velocity and bypass opening are optimized simultaneously by the Sequential Quadratic Programming (SQP) method. The optimization of HEN throughout the operating cycle is a mixed-integer nonlinear problem and is solved by the stage-wise solution procedure. The proposed method can efficiently optimize the design and operation of a HEN throughout the operating cycle. For the studied case, the total cost can be reduced by 62% after the optimization.

Suggested Citation

  • Hang, Peng & Zhao, Liwen & Liu, Guilian, 2022. "Optimal design of heat exchanger network considering the fouling throughout the operating cycle," Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031625
    DOI: 10.1016/j.energy.2021.122913
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221031625
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122913?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Lin & Zha, Xinlang & Luo, Xionglin, 2018. "Coordination between bypass control and economic optimization for heat exchanger network," Energy, Elsevier, vol. 160(C), pages 318-329.
    2. Akpomiemie, Mary O. & Smith, Robin, 2018. "Cost-effective strategy for heat exchanger network retrofit," Energy, Elsevier, vol. 146(C), pages 82-97.
    3. Matthias Rathjens & Georg Fieg, 2019. "Cost-Optimal Heat Exchanger Network Synthesis Based on a Flexible Cost Functions Framework," Energies, MDPI, vol. 12(5), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    2. Zhu, Xiaochen & Fuli, Wang, 2023. "Energy savings bottleneck diagnosis and optimization decision method for industrial auxiliary system based on energy efficiency gap analysis," Energy, Elsevier, vol. 263(PE).
    3. Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.
    4. Zdeněk Jegla & Vít Freisleben, 2020. "Practical Energy Retrofit of Heat Exchanger Network Not Containing Utility Path," Energies, MDPI, vol. 13(11), pages 1-16, May.
    5. Wan, Xin & Luo, Xiong-Lin, 2020. "Economic optimization of chemical processes based on zone predictive control with redundancy variables," Energy, Elsevier, vol. 212(C).
    6. Brage Rugstad Knudsen & Hanne Kauko & Trond Andresen, 2019. "An Optimal-Control Scheme for Coordinated Surplus-Heat Exchange in Industry Clusters," Energies, MDPI, vol. 12(10), pages 1-22, May.
    7. Bohong Wang & Jiří Jaromír Klemeš & Petar Sabev Varbanov & Min Zeng, 2020. "An Extended Grid Diagram for Heat Exchanger Network Retrofit Considering Heat Exchanger Types," Energies, MDPI, vol. 13(10), pages 1-14, May.
    8. Leopold Prendl & René Hofmann, 2021. "Case Study of Multi-Period MILP HENS with Heat Pump and Storage Options for the Application in Energy Intensive Industries," Energies, MDPI, vol. 14(20), pages 1-21, October.
    9. Pintarič, Zorka Novak & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2019. "Multi-objective multi-period synthesis of energy efficient processes under variable environmental taxes," Energy, Elsevier, vol. 189(C).
    10. Boldyryev, Stanislav & Gil, Tatyana & Ilchenko, Mariia, 2022. "Environmental and economic assessment of the efficiency of heat exchanger network retrofit options based on the experience of society and energy price records," Energy, Elsevier, vol. 260(C).
    11. Wang, Bohong & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Chin, Hon Huin & Wang, Qiu-Wang & Zeng, Min, 2020. "Heat exchanger network retrofit by a shifted retrofit thermodynamic grid diagram-based model and a two-stage approach," Energy, Elsevier, vol. 198(C).
    12. Dong, Zhe & Li, Bowen & Li, Junyi & Jiang, Di & Guo, Zhiwu & Huang, Xiaojin & Zhang, Zuoyi, 2021. "Passivity based control of heat exchanger networks with application to nuclear heating," Energy, Elsevier, vol. 223(C).
    13. Wang, Bohong & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Zeng, Min & Liang, Yongtu, 2021. "Heat Exchanger Network synthesis considering prohibited and restricted matches," Energy, Elsevier, vol. 225(C).
    14. Lal, Nathan S. & Atkins, Martin J. & Walmsley, Timothy G. & Walmsley, Michael R.W. & Neale, James R., 2019. "Insightful heat exchanger network retrofit design using Monte Carlo simulation," Energy, Elsevier, vol. 181(C), pages 1129-1141.
    15. Wang, Bohong & Klemeš, Jiří Jaromír & Li, Nianqi & Zeng, Min & Varbanov, Petar Sabev & Liang, Yongtu, 2021. "Heat exchanger network retrofit with heat exchanger and material type selection: A review and a novel method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Liu, Zhaoli & Yang, Lu & Yang, Siyu & Qian, Yu, 2022. "An extended stage-wise superstructure for heat exchanger network synthesis with intermediate placement of multiple utilities," Energy, Elsevier, vol. 248(C).
    17. Keivan Nemati-Amirkolaii & Hedi Romdhana & Marie-Laure Lameloise, 2019. "Pinch Methods for Efficient Use of Water in Food Industry: A Survey Review," Sustainability, MDPI, vol. 11(16), pages 1-26, August.
    18. Liu, Linlin & Li, Chenying & Gu, Siwen & Zhang, Lei & Du, Jian, 2020. "Optimization-based framework for the synthesis of heat exchanger networks incorporating controllability," Energy, Elsevier, vol. 208(C).
    19. Dizaji, Hamed Sadighi & Pourhedayat, Samira & Aldawi, Fayez & Moria, Hazim & Anqi, Ali E. & Jarad, Fahd, 2022. "Proposing an innovative and explicit economic criterion for all passive heat transfer enhancement techniques of heat exchangers," Energy, Elsevier, vol. 239(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.