IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v204y2020ics0360544220310173.html
   My bibliography  Save this article

A useful formulas to describe the performance of a steam condenser in off-design conditions

Author

Listed:
  • Laskowski, Rafał
  • Smyk, Adam
  • Rusowicz, Artur
  • Grzebielec, Andrzej

Abstract

The article presents relations for determining the performance of a steam condenser in off-design operating conditions. To determine some steam condenser characteristics that are simplified, but useful for analyzing steam cycles of a power unit, a model validated on the basis of factory characteristics and measurement data was used. Formulas presented in the article-for given values of cooling water temperature at the condenser inlet, the cooling water mass flow rate, the inlet steam mass flow rate and reference data-determine the cooling water temperature at the outlet and the pressure in the steam condenser. The model can be used to analyze the operation of cooling systems in off-design conditions and to optimize the way the condenser works with the low-pressure (LP) part of the turbine and all steam cycles. The two proposed relations make it possible to determine the condenser performance easily and with acceptable accuracy. The correctness of the proposed relations was verified on the basis of data obtained from the condenser simulator, measurements obtained from the Distributed Control System (DCS), and data provided in the literature.

Suggested Citation

  • Laskowski, Rafał & Smyk, Adam & Rusowicz, Artur & Grzebielec, Andrzej, 2020. "A useful formulas to describe the performance of a steam condenser in off-design conditions," Energy, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310173
    DOI: 10.1016/j.energy.2020.117910
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220310173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117910?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laskowski, Rafał & Smyk, Adam & Lewandowski, Janusz & Rusowicz, Artur & Grzebielec, Andrzej, 2016. "Selecting the cooling water mass flow rate for a power plant under variable load with entropy generation rate minimization," Energy, Elsevier, vol. 107(C), pages 725-733.
    2. Ahmadi, Gholam Reza & Toghraie, Davood, 2016. "Energy and exergy analysis of Montazeri Steam Power Plant in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 454-463.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nithyanandam, K. & Shoaei, P. & Pitchumani, R., 2021. "Technoeconomic analysis of thermoelectric power plant condensers with nonwetting surfaces," Energy, Elsevier, vol. 227(C).
    2. Xin Wang & Gang Zhao & Xinhe Qu & Xiaoyong Yang & Jie Wang & Peng Wang, 2023. "Influence of Cooling Water Parameters on the Thermal Performance of the Secondary Circuit System of a Modular High-Temperature Gas-Cooled Reactor Nuclear Power Plant," Energies, MDPI, vol. 16(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josip Orović & Vedran Mrzljak & Igor Poljak, 2018. "Efficiency and Losses Analysis of Steam Air Heater from Marine Steam Propulsion Plant," Energies, MDPI, vol. 11(11), pages 1-18, November.
    2. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Gao, Jintong & Zhang, Qi & Wang, Xiaozhuang & Song, Dayong & Liu, Weiqi & Liu, Wenchao, 2018. "Exergy and exergoeconomic analyses with modeling for CO2 allocation of coal-fired CHP plants," Energy, Elsevier, vol. 152(C), pages 562-575.
    4. Chauhan, Shivendra Singh & Khanam, Shabina, 2019. "Enhancement of efficiency for steam cycle of thermal power plants using process integration," Energy, Elsevier, vol. 173(C), pages 364-373.
    5. C, Alimonti & P, Conti & E, Soldo, 2019. "A comprehensive exergy evaluation of a deep borehole heat exchanger coupled with a ORC plant: the case study of Campi Flegrei," Energy, Elsevier, vol. 189(C).
    6. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    7. Jonynas, Rolandas & Puida, Egidijus & Poškas, Robertas & Paukštaitis, Linas & Jouhara, Hussam & Gudzinskas, Juozas & Miliauskas, Gintautas & Lukoševičius, Valdas, 2020. "Renewables for district heating: The case of Lithuania," Energy, Elsevier, vol. 211(C).
    8. Zhao, Haitao & Jiang, Peng & Chen, Zhe & Ezeh, Collins I. & Hong, Yuanda & Guo, Yishan & Zheng, Chenghang & Džapo, Hrvoje & Gao, Xiang & Wu, Tao, 2019. "Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach," Applied Energy, Elsevier, vol. 254(C).
    9. Xin Wang & Gang Zhao & Xinhe Qu & Xiaoyong Yang & Jie Wang & Peng Wang, 2023. "Influence of Cooling Water Parameters on the Thermal Performance of the Secondary Circuit System of a Modular High-Temperature Gas-Cooled Reactor Nuclear Power Plant," Energies, MDPI, vol. 16(18), pages 1-17, September.
    10. Xiao, Liehui & Yang, Minlin & Zhao, Shuaifei & Yuan, Wu-Zhi & Huang, Si-Min, 2019. "Entropy generation analysis of heat and water recovery from flue gas by transport membrane condenser," Energy, Elsevier, vol. 174(C), pages 835-847.
    11. Naderi, Mansoor & Ahmadi, Gholamreza & Zarringhalam, Majid & Akbari, Omidali & Khalili, Ebrahim, 2018. "Application of water reheating system for waste heat recovery in NG pressure reduction stations, with experimental verification," Energy, Elsevier, vol. 162(C), pages 1183-1192.
    12. El-Behery, Samy M. & Hussien, A.A. & Kotb, H. & El-Shafie, Mostafa, 2017. "Performance evaluation of industrial glass furnace regenerator," Energy, Elsevier, vol. 119(C), pages 1119-1130.
    13. Yılmaz, Kadir & Kayfeci, Muhammet & Keçebaş, Ali, 2019. "Thermodynamic evaluation of a waste gas-fired steam power plant in an iron and steel facility using enhanced exergy analysis," Energy, Elsevier, vol. 169(C), pages 684-695.
    14. Gu, Yandong & Pei, Ji & Yuan, Shouqi & Wang, Wenjie & Zhang, Fan & Wang, Peng & Appiah, Desmond & Liu, Yong, 2019. "Clocking effect of vaned diffuser on hydraulic performance of high-power pump by using the numerical flow loss visualization method," Energy, Elsevier, vol. 170(C), pages 986-997.
    15. Ahmadi, Gholamreza & Toghraie, Davood & Akbari, Omid Ali, 2017. "Solar parallel feed water heating repowering of a steam power plant: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 474-485.
    16. Javad Adeli & Mohammadreza Niknejadi & Davood Toghraie, 2020. "Full repowering of an existing fossil fuel steam power plant in terms of energy, exergy, and environmen for efficiency improvement and sustainable development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5965-5999, August.
    17. El-Shafie, Mostafa & Kambara, Shinji & Hayakawa, Yukio & Hussien, A.A., 2021. "Integration between energy and exergy analyses to assess the performance of furnace regenerative and ammonia decomposition systems," Renewable Energy, Elsevier, vol. 175(C), pages 232-243.
    18. Saghi, Hassan & Lakzian, Esmail, 2017. "Optimization of the rectangular storage tanks for the sloshing phenomena based on the entropy generation minimization," Energy, Elsevier, vol. 128(C), pages 564-574.
    19. Ahmadi, Gholamreza & Toghraie, Davood & Akbari, Omidali, 2019. "Energy, exergy and environmental (3E) analysis of the existing CHP system in a petrochemical plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 234-242.
    20. Bablu K. Ghosh & Saad Mekhilef & Shameem Ahmad & Swapan K. Ghosh, 2022. "A Review on Global Emissions by E-Products Based Waste: Technical Management for Reduced Effects and Achieving Sustainable Development Goals," Sustainability, MDPI, vol. 14(7), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.