IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v198y2020ics0360544220304503.html
   My bibliography  Save this article

Analysis of the impact of coal quality on the heat transfer distribution in a high-ash pulverized coal boiler using co-simulation

Author

Listed:
  • Rousseau, Pieter
  • Laubscher, Ryno

Abstract

The burning of very high ash coal can adversely affect heat absorption in boiler furnaces and radiant superheater heat exchangers, while the lower calorific value can lead to lower bulk furnace temperatures and higher tube wall temperatures in the radiative superheaters. This paper presents the results of a numerical study that compares the heat transfer characteristics of a subcritical boiler firing coal with a very high ash content to that of the same boiler burning the original design coal. The analysis is based on a detailed furnace combustion and heat transfer CFD model using ANSYS Fluent®, applied in a co-simulation mode together with a system level thermofluid network model using Flownex® SE. Furthermore, the particulate radiation models include the effects of variable emissivity and scattering as the particles transition from parent fuel to ash. The aim is to demonstrate the extent to which the effects of differences in the coal quality can be identified in utility scale boilers using this approach. The results show that it is possible to identify the impact on furnace and radiant heat exchanger heat uptake, steam generation rate, as well as potential areas of high heat exchanger tube wall temperatures.

Suggested Citation

  • Rousseau, Pieter & Laubscher, Ryno, 2020. "Analysis of the impact of coal quality on the heat transfer distribution in a high-ash pulverized coal boiler using co-simulation," Energy, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:energy:v:198:y:2020:i:c:s0360544220304503
    DOI: 10.1016/j.energy.2020.117343
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220304503
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Chungen, 2015. "On gas and particle radiation in pulverized fuel combustion furnaces," Applied Energy, Elsevier, vol. 157(C), pages 554-561.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pieter Rousseau & Ryno Laubscher & Brad Travis Rawlins, 2023. "Heat Transfer Analysis Using Thermofluid Network Models for Industrial Biomass and Utility Scale Coal-Fired Boilers," Energies, MDPI, vol. 16(4), pages 1-49, February.
    2. He, Qing & Gong, Yan & Ding, Lu & Guo, Qinghua & Yoshikawa, Kunio & Yu, Guangsuo, 2021. "Reactivity prediction and mechanism analysis of raw and demineralized coal char gasification," Energy, Elsevier, vol. 229(C).
    3. Yin, Junjie & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Yan, Junjie, 2021. "Dynamic performance and control strategy modification for coal-fired power unit under coal quality variation," Energy, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Pichler & Markus Bösenhofer & Michael Harasek, 2022. "Dataset for the Heat-Up and Heat Transfer towards Single Particles and Synthetic Particle Clusters from Particle-Resolved CFD Simulations," Data, MDPI, vol. 7(2), pages 1-13, February.
    2. Lukas Pörtner & Ying Gu & Martin Schiemann, 2020. "Investigation of Pulverized Biomass and Coal Char Emissivity," Energies, MDPI, vol. 13(18), pages 1-11, September.
    3. Laubscher, Ryno & Rousseau, Pieter, 2020. "Numerical investigation on the impact of variable particle radiation properties on the heat transfer in high ash pulverized coal boiler through co-simulation," Energy, Elsevier, vol. 195(C).
    4. Jin, Donghao & Yan, Jingwen & Liu, Xin & Zhang, Chaoqun & Wang, Heyang, 2023. "Prediction of tube temperature distribution of boiler platen superheater by a coupled combustion and hydrodynamic model," Energy, Elsevier, vol. 279(C).
    5. Guo, Junjun & Liu, Zhaohui & Hu, Fan & Li, Pengfei & Luo, Wei & Huang, Xiaohong, 2018. "A compatible configuration strategy for burner streams in a 200 MWe tangentially fired oxy-fuel combustion boiler," Applied Energy, Elsevier, vol. 220(C), pages 59-69.
    6. von Bohnstein, Maximilian & Richter, Marcel & Graeser, Phillip & Schiemann, Martin & Ströhle, Jochen & Epple, Bernd, 2021. "3D CFD simulation of a 250 MWel oxy-fuel boiler with evaluation of heat radiation calculation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Bordbar, Hadi & Maximov, Alexander & Hyppänen, Timo, 2019. "Improved banded method for spectral thermal radiation in participating media with spectrally dependent wall emittance," Applied Energy, Elsevier, vol. 235(C), pages 1090-1105.
    8. Hyunbin Jo & Jongkeun Park & Woosuk Kang & Junseok Hong & Sungmin Yoon & Howon Ra & Changkook Ryu, 2021. "Influence of Uneven Secondary Air Supply and Burner Tilt on Flow Pattern, Heat Transfer, and NOx Emissions in a 500 MWe Tangential-Firing Coal Boiler," Energies, MDPI, vol. 14(24), pages 1-18, December.
    9. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    10. Yang, Xin & Clements, Alastair & Szuhánszki, János & Huang, Xiaohong & Farias Moguel, Oscar & Li, Jia & Gibbins, Jon & Liu, Zhaohui & Zheng, Chuguang & Ingham, Derek & Ma, Lin & Nimmo, Bill & Pourkash, 2018. "Prediction of the radiative heat transfer in small and large scale oxy-coal furnaces," Applied Energy, Elsevier, vol. 211(C), pages 523-537.
    11. Mikulčić, Hrvoje & von Berg, Eberhard & Vujanović, Milan & Wang, Xuebin & Tan, Houzhang & Duić, Neven, 2016. "Numerical evaluation of different pulverized coal and solid recovered fuel co-firing modes inside a large-scale cement calciner," Applied Energy, Elsevier, vol. 184(C), pages 1292-1305.
    12. Ma, Lun & Fang, Qingyan & Yin, Chungen & Wang, Huajian & Zhang, Cheng & Chen, Gang, 2019. "A novel corner-fired boiler system of improved efficiency and coal flexibility and reduced NOx emissions," Applied Energy, Elsevier, vol. 238(C), pages 453-465.
    13. Ma, Lun & Fang, Qingyan & Tan, Peng & Zhang, Cheng & Chen, Gang & Lv, Dangzhen & Duan, Xuenong & Chen, Yiping, 2016. "Effect of the separated overfire air location on the combustion optimization and NOx reduction of a 600MWe FW down-fired utility boiler with a novel combustion system," Applied Energy, Elsevier, vol. 180(C), pages 104-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:198:y:2020:i:c:s0360544220304503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.