IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v182y2019icp729-738.html
   My bibliography  Save this article

A method for technical assessment of power-to-heat use cases to couple local district heating and electrical distribution grids

Author

Listed:
  • Leitner, Benedikt
  • Widl, Edmund
  • Gawlik, Wolfgang
  • Hofmann, René

Abstract

The transition of district heating and electrical distribution grids from traditionally independent to actively coupled and operated networks is seen as an important step on the way to smart energy networks. This work presents a method that enables a detailed technical assessment of the operation of such coupled heat and power networks. It is based on a sequential coupling approach of a dynamic thermal-hydraulic model for the district heating network and a quasi-static model for the electrical distribution network. Different use cases are highlighted where a local coupling of the networks with power-to-heat is supporting the transition to smart energy networks, i.e., lowering district heating supply temperatures, accommodating renewable energy sources in the power network and integrating low-temperature heat sources into the district heating network. All three use cases are implemented in example applications to showcase the versatility of the method. The results underline the presented method's ability to perform detailed technical assessments of coupled heat and power networks.

Suggested Citation

  • Leitner, Benedikt & Widl, Edmund & Gawlik, Wolfgang & Hofmann, René, 2019. "A method for technical assessment of power-to-heat use cases to couple local district heating and electrical distribution grids," Energy, Elsevier, vol. 182(C), pages 729-738.
  • Handle: RePEc:eee:energy:v:182:y:2019:i:c:p:729-738
    DOI: 10.1016/j.energy.2019.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219311399
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dranka, Géremi Gilson & Ferreira, Paula, 2020. "Load flexibility potential across residential, commercial and industrial sectors in Brazil," Energy, Elsevier, vol. 201(C).
    2. Jasmine Ramsebner & Reinhard Haas & Amela Ajanovic & Martin Wietschel, 2021. "The sector coupling concept: A critical review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    3. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    4. Volkova, A. & Koduvere, H. & Pieper, H., 2022. "Large-scale heat pumps for district heating systems in the Baltics: Potential and impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Leitner, Benedikt & Widl, Edmund & Gawlik, Wolfgang & Hofmann, René, 2020. "Control assessment in coupled local district heating and electrical distribution grids: Model predictive control of electric booster heaters," Energy, Elsevier, vol. 210(C).
    6. Gronier, Timothé & Fitó, Jaume & Franquet, Erwin & Gibout, Stéphane & Ramousse, Julien, 2022. "Iterative sizing of solar-assisted mixed district heating network and local electrical grid integrating demand-side management," Energy, Elsevier, vol. 238(PA).
    7. Steinegger, Josef & Wallner, Stefan & Greiml, Matthias & Kienberger, Thomas, 2023. "A new quasi-dynamic load flow calculation for district heating networks," Energy, Elsevier, vol. 266(C).
    8. Wendel, Frank & Blesl, Markus & Brodecki, Lukasz & Hufendiek, Kai, 2022. "Expansion or decommission? – Transformation of existing district heating networks by reducing temperature levels in a cost-optimum network design," Applied Energy, Elsevier, vol. 310(C).
    9. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Pieper, Henrik & Krupenski, Igor & Brix Markussen, Wiebke & Ommen, Torben & Siirde, Andres & Volkova, Anna, 2021. "Method of linear approximation of COP for heat pumps and chillers based on thermodynamic modelling and off-design operation," Energy, Elsevier, vol. 230(C).
    11. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    12. Turk, Ana & Wu, Qiuwei & Zhang, Menglin & Østergaard, Jacob, 2020. "Day-ahead stochastic scheduling of integrated multi-energy system for flexibility synergy and uncertainty balancing," Energy, Elsevier, vol. 196(C).
    13. Edmund Widl & Benedikt Leitner & Daniele Basciotti & Sawsan Henein & Tarik Ferhatbegovic & René Hofmann, 2020. "Combined Optimal Design and Control of Hybrid Thermal-Electrical Distribution Grids Using Co-Simulation," Energies, MDPI, vol. 13(8), pages 1-21, April.
    14. Carli, Raffaele & Dotoli, Mariagrazia & Jantzen, Jan & Kristensen, Michael & Ben Othman, Sarah, 2020. "Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Samsø," Energy, Elsevier, vol. 198(C).
    15. Edmund Widl & Giorgio Agugiaro & Jan Peters-Anders, 2021. "Linking Semantic 3D City Models with Domain-Specific Simulation Tools for the Planning and Validation of Energy Applications at District Level," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    16. Dorotić, Hrvoje & Ban, Marko & Pukšec, Tomislav & Duić, Neven, 2020. "Impact of wind penetration in electricity markets on optimal power-to-heat capacities in a local district heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:182:y:2019:i:c:p:729-738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.