IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v182y2019icp159-176.html
   My bibliography  Save this article

Comparison of inflow and outflow radial air turbines in vented and bidirectional OWC wave energy converters

Author

Listed:
  • Ansarifard, Nazanin
  • Fleming, Alan
  • Henderson, Alan
  • Kianejad, S.S.
  • Chai, Shuhong
  • Orphin, Jarrah

Abstract

This study analyses the aerodynamic performance of two unidirectional-radial-air-turbine configurations; inflow and outflow. These turbines were studied as the Power-Take-Off unit for application on a vented-OWC and a conventional-bidirectional-OWC with a twin-turbine topology, forming four different turbine-OWC configurations. These configurations were evaluated in terms of full-scale power extraction using extrapolated hydrodynamic experimental data of irregular waves for a King Island test site. The power extraction capacity was evaluated by defining a lower and upper bound of power generation under fixed and controlled-RPM schemes and the energy produced in each configuration was then compared against a state-of-the-art twin-rotor turbine. It was found that the difference between these power extraction bounds was lower in case of the outflow turbine, which shows this turbine is less sensitive to RPM variations than the inflow turbine. In addition, due to its lower resistance to the flow in direct mode, the outflow turbine has a smaller full-scale size than the inflow turbine. It was concluded that the outflow turbine provides better efficiency in a twin-turbine-OWC system, while the inflow turbine yields higher conversion efficiency in a vented-OWC system. The vented OWC equipped with a radial inflow turbine can obtain comparable power to the bidirectional OWC system.

Suggested Citation

  • Ansarifard, Nazanin & Fleming, Alan & Henderson, Alan & Kianejad, S.S. & Chai, Shuhong & Orphin, Jarrah, 2019. "Comparison of inflow and outflow radial air turbines in vented and bidirectional OWC wave energy converters," Energy, Elsevier, vol. 182(C), pages 159-176.
  • Handle: RePEc:eee:energy:v:182:y:2019:i:c:p:159-176
    DOI: 10.1016/j.energy.2019.06.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219311648
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gimara Rajapakse & Shantha Jayasinghe & Alan Fleming, 2020. "Power Smoothing and Energy Storage Sizing of Vented Oscillating Water Column Wave Energy Converter Arrays," Energies, MDPI, vol. 13(5), pages 1-13, March.
    2. Ansarifard, Nazanin & Kianejad, S.S. & Fleming, Alan & Henderson, Alan & Chai, Shuhong, 2020. "Design optimization of a purely radial turbine for operation in the inhalation mode of an oscillating water column," Renewable Energy, Elsevier, vol. 152(C), pages 540-556.
    3. Manuel García-Díaz & Bruno Pereiras & Celia Miguel-González & Laudino Rodríguez & Jesús Fernández-Oro, 2021. "CFD Analysis of the Performance of a Double Decker Turbine for Wave Energy Conversion," Energies, MDPI, vol. 14(4), pages 1-19, February.
    4. Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Li, Ming, 2022. "Experimental study on the overall performance of a model OWC system under the free-spinning mode in irregular waves," Energy, Elsevier, vol. 250(C).
    5. Hsien Hua Lee & Cheng-Han Chen, 2020. "Parametric Study for an Oscillating Water Column Wave Energy Conversion System Installed on a Breakwater," Energies, MDPI, vol. 13(8), pages 1-22, April.
    6. Gato, L.M.C. & Maduro, A.R. & Carrelhas, A.A.D. & Henriques, J.C.C. & Ferreira, D.N., 2021. "Performance improvement of the biradial self-rectifying impulse air-turbine for wave energy conversion by multi-row guide vanes: Design and experimental results," Energy, Elsevier, vol. 216(C).
    7. Rodríguez, Laudino & Pereiras, Bruno & García-Diaz, Manuel & Fernández-Oro, Jesús & Castro, Francisco, 2020. "Flow pattern analysis of an outflow radial turbine for twin-turbines-OWC wave energy converters," Energy, Elsevier, vol. 211(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:182:y:2019:i:c:p:159-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.