IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v166y2019icp918-928.html
   My bibliography  Save this article

Simulated performance analysis of a solar aided power generation plant in fuel saving operation mode

Author

Listed:
  • Zhang, Nan
  • Hou, Hongjuan
  • Yu, Gang
  • Hu, Eric
  • Duan, Liqiang
  • Zhao, Jin

Abstract

Solar aided (coal-fired) power generation (SAPG) system has been proved to be an efficient way to utilize the solar energy for power generation. Due to the instability of the solar radiation, a SAPG system generally operates under transient working conditions. In this paper, performance simulation sub-models of main components in a SAPG plant are established based on the lumped parameter assumption. A 330 MW SAPG power plant as a case study is simulated. The variations of the performances, main parameters of the plant with the solar field heat output and the dynamic responses under a typical day are analyzed. The results show that when the heat output of the solar field changes from 0 kJ/h to 2.13 × 108 kJ/h, the coal saving rate will increase to 6.4%, and the solar power generation share (the proportion of the power from the solar energy to the total power from the SAPG plant) will increase to 7.74%. During the analysis process, in order to optimize the solar field, the concept of the solar field equivalent efficiency (SFEE) is proposed and the optimal velocity of heat transfer fluid (HTF) in absorber tube is obtained.

Suggested Citation

  • Zhang, Nan & Hou, Hongjuan & Yu, Gang & Hu, Eric & Duan, Liqiang & Zhao, Jin, 2019. "Simulated performance analysis of a solar aided power generation plant in fuel saving operation mode," Energy, Elsevier, vol. 166(C), pages 918-928.
  • Handle: RePEc:eee:energy:v:166:y:2019:i:c:p:918-928
    DOI: 10.1016/j.energy.2018.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218319959
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Chang & Hou, Hongjuan & Hu, Eric & Liang, Mingyu & Yang, Yongping, 2017. "Impact of power station capacities and sizes of solar field on the performance of solar aided power generation," Energy, Elsevier, vol. 139(C), pages 667-679.
    2. Hou, Hongjuan & Xu, Zhang & Yang, Yongping, 2016. "An evaluation method of solar contribution in a solar aided power generation (SAPG) system based on exergy analysis," Applied Energy, Elsevier, vol. 182(C), pages 1-8.
    3. Wu, Junjie & Hou, Hongjuan & Yang, Yongping & Hu, Eric, 2015. "Annual performance of a solar aided coal-fired power generation system (SACPG) with various solar field areas and thermal energy storage capacity," Applied Energy, Elsevier, vol. 157(C), pages 123-133.
    4. Dersch, Jürgen & Geyer, Michael & Herrmann, Ulf & Jones, Scott A. & Kelly, Bruce & Kistner, Rainer & Ortmanns, Winfried & Pitz-Paal, Robert & Price, Henry, 2004. "Trough integration into power plants—a study on the performance and economy of integrated solar combined cycle systems," Energy, Elsevier, vol. 29(5), pages 947-959.
    5. Peng, Shuo & Hong, Hui & Wang, Yanjuan & Wang, Zhaoguo & Jin, Hongguang, 2014. "Off-design thermodynamic performances on typical days of a 330MW solar aided coal-fired power plant in China," Applied Energy, Elsevier, vol. 130(C), pages 500-509.
    6. Hu, Eric & Yang, YongPing & Nishimura, Akira & Yilmaz, Ferdi & Kouzani, Abbas, 2010. "Solar thermal aided power generation," Applied Energy, Elsevier, vol. 87(9), pages 2881-2885, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Hui & Chong, Daotong & Wang, Zhu & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2022. "Dynamic performance enhancement of solar-aided coal-fired power plant by control strategy optimization with solar/coal-to-power conversion characteristics," Energy, Elsevier, vol. 244(PA).
    2. Vinod Kumar & Liqiang Duan, 2021. "Off-Design Dynamic Performance Analysis of a Solar Aided Coal-Fired Power Plant," Energies, MDPI, vol. 14(10), pages 1-16, May.
    3. Jiang, Yue & Duan, Liqiang & Pang, Liping & Song, Jifeng, 2021. "Thermal performance study of tower solar aided double reheat coal-fired power generation system," Energy, Elsevier, vol. 230(C).
    4. Qin, Jiyun & Zhang, Qinglei & Hu, Eric & Duan, Jianguo & Zhou, Ying & Zhang, Hongsheng, 2022. "Optimisation of Solar Aided Power Generation plant with storage system adopting two non-displaced extraction steam operation strategies," Energy, Elsevier, vol. 239(PA).
    5. Han, Yu & Sun, Yingying & Wu, Junjie, 2020. "An efficient solar-aided waste heat recovery system based on steam ejector and WTA pre-drying in solar/lignite hybrid power plants," Energy, Elsevier, vol. 208(C).
    6. Huang, Chang & Hou, Hongjuan & Hu, Eric & Yu, Gang & Chen, Si & Yang, Yongping, 2020. "Measures to reduce solar energy dumped in a solar aided power generation plant," Applied Energy, Elsevier, vol. 258(C).
    7. Huang, Chang & Madonski, Rafal & Zhang, Qi & Yan, Yixian & Zhang, Nan & Yang, Yongping, 2022. "On the use of thermal energy storage in solar-aided power generation systems," Applied Energy, Elsevier, vol. 310(C).
    8. Zhang, Zuxian & Duan, Liqiang & Wang, Zhen & Ren, Yujie, 2022. "General performance evaluation method of integrated solar combined cycle (ISCC) system," Energy, Elsevier, vol. 240(C).
    9. Zhang, Nan & Yu, Gang & Huang, Chang & Duan, Liqiang & Hou, Hongjuan & Hu, Eric & Ding, Zeyu & Wang, Jianhua, 2020. "Full-day dynamic characteristics analysis of a solar aided coal-fired power plant in fuel saving mode," Energy, Elsevier, vol. 208(C).
    10. Liu, Hongtao & Zhai, Rongrong & Patchigolla, Kumar & Turner, Peter & Yang, Yongping, 2020. "Performance analysis of a novel combined solar trough and tower aided coal-fired power generation system," Energy, Elsevier, vol. 201(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Chang & Hou, Hongjuan & Hu, Eric & Yu, Gang & Peng, Hao & Zhao, Jin & Yang, Yongping, 2019. "Stabilizing operation of a solar aided power generation (SAPG) plant by adjusting the burners’ tilt and attemperation flows in the boiler," Energy, Elsevier, vol. 173(C), pages 1208-1220.
    2. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    3. Huang, Chang & Hou, Hongjuan & Hu, Eric & Yu, Gang & Peng, Hao & Yang, Yongping & Wang, Lu & Zhao, Jin, 2019. "Performance maximization of a solar aided power generation (SAPG) plant with a direct air-cooled condenser in power-boosting mode," Energy, Elsevier, vol. 175(C), pages 891-899.
    4. Hou, Hongjuan & Xu, Zhang & Yang, Yongping, 2016. "An evaluation method of solar contribution in a solar aided power generation (SAPG) system based on exergy analysis," Applied Energy, Elsevier, vol. 182(C), pages 1-8.
    5. Li, Chao & Yang, Zhiping & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E., 2018. "Off-design thermodynamic performances of a solar tower aided coal-fired power plant for different solar multiples with thermal energy storage," Energy, Elsevier, vol. 163(C), pages 956-968.
    6. Zhang, Maolong & Xu, Chao & Du, Xiaoze & Amjad, Muhammad & Wen, Dongsheng, 2017. "Off-design performance of concentrated solar heat and coal double-source boiler power generation with thermocline energy storage," Applied Energy, Elsevier, vol. 189(C), pages 697-710.
    7. Wang, Ruilin & Sun, Jie & Hong, Hui & Jin, Hongguang, 2018. "Comprehensive evaluation for different modes of solar-aided coal-fired power generation system under common framework regarding both coal-savability and efficiency-promotability," Energy, Elsevier, vol. 143(C), pages 151-167.
    8. Wu, Junjie & Han, Yu & Hou, Hongjuan & Sun, Yingying, 2020. "Optimization of solar field layout and flow velocity in a solar-aided power generation system," Energy, Elsevier, vol. 208(C).
    9. Huang, Chang & Hou, Hongjuan & Hu, Eric & Yu, Gang & Chen, Si & Yang, Yongping, 2020. "Measures to reduce solar energy dumped in a solar aided power generation plant," Applied Energy, Elsevier, vol. 258(C).
    10. Vinod Kumar & Liqiang Duan, 2021. "Off-Design Dynamic Performance Analysis of a Solar Aided Coal-Fired Power Plant," Energies, MDPI, vol. 14(10), pages 1-16, May.
    11. Wang, Ruilin & Sun, Jie & Hong, Hui, 2019. "Proposal of solar-aided coal-fired power generation system with direct steam generation and active composite sun-tracking," Renewable Energy, Elsevier, vol. 141(C), pages 596-612.
    12. Bame, Aaron T. & Furner, Joseph & Hoag, Ian & Mohammadi, Kasra & Powell, Kody & Iverson, Brian D., 2022. "Optimization of solar-coal hybridization for low solar augmentation," Applied Energy, Elsevier, vol. 319(C).
    13. Jun Zhao & Kun Yang, 2020. "Allocating Output Electricity in a Solar-Aided Coal-Fired Power Generation System and Assessing Its CO 2 Emission Reductions in China," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    14. Huang, Chang & Madonski, Rafal & Zhang, Qi & Yan, Yixian & Zhang, Nan & Yang, Yongping, 2022. "On the use of thermal energy storage in solar-aided power generation systems," Applied Energy, Elsevier, vol. 310(C).
    15. Zhai, Rongrong & Zhao, Miaomiao & Tan, Kaiyu & Yang, Yongping, 2015. "Optimizing operation of a solar-aided coal-fired power system based on the solar contribution evaluation method," Applied Energy, Elsevier, vol. 146(C), pages 328-334.
    16. Liu, Hongtao & Zhai, Rongrong & Patchigolla, Kumar & Turner, Peter & Yang, Yongping, 2020. "Performance analysis of a novel combined solar trough and tower aided coal-fired power generation system," Energy, Elsevier, vol. 201(C).
    17. Wu, Junjie & Han, Yu, 2023. "Integration strategy optimization of solar-aided combined heat and power (CHP) system," Energy, Elsevier, vol. 263(PC).
    18. Han, Yu & Sun, Yingying & Wu, Junjie, 2021. "A low-cost and efficient solar/coal hybrid power generation mode: Integration of non-concentrating solar energy and air preheating process," Energy, Elsevier, vol. 235(C).
    19. Shagdar, Enkhbayar & Lougou, Bachirou Guene & Shuai, Yong & Anees, Junaid & Damdinsuren, Chimedsuren & Tan, Heping, 2020. "Performance analysis and techno-economic evaluation of 300 MW solar-assisted power generation system in the whole operation conditions," Applied Energy, Elsevier, vol. 264(C).
    20. Huang, Chang & Hou, Hongjuan & Hu, Eric & Liang, Mingyu & Yang, Yongping, 2017. "Impact of power station capacities and sizes of solar field on the performance of solar aided power generation," Energy, Elsevier, vol. 139(C), pages 667-679.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:166:y:2019:i:c:p:918-928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.