IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v156y2018icp95-102.html
   My bibliography  Save this article

Bifunctional MOF-derived Co-N-doped carbon electrocatalysts for high-performance zinc-air batteries and MFCs

Author

Listed:
  • Li, Jie-Cheng
  • Wu, Xiao-Tong
  • Chen, Li-Jun
  • Li, Nan
  • Liu, Zhao-Qing

Abstract

High cost and vulnerable stability of noble metal catalysts are the main barriers to develop the sustainable clean energy conversion and storage technology. In this work, a novel Co species/N-doped carbon (Co-N-C) derived from ZIF-67 has been designed and successfully prepared by a simple and feasible process. The ORR activities of the obtained Co-N-C with different contents of cobalt species were systematically investigated and clearly elucidated. Notably, the Co-N-C cathode exhibits a high onset-potential −0.12 V (vs. SCE) and long-tern stability in alkaline situation. Furthermore, the self-assembled Zn-air battery and microbial fuel cells (MFCs) devices coupled with Co-N-C cathode also achieve superior open-circuit potentials (Zn-air: 1.40 V, MFC: 0.45 V) and high power densities (Zn-air: 102.3 mW m−2, MFC: 399.7 ± 10 mW m−2).

Suggested Citation

  • Li, Jie-Cheng & Wu, Xiao-Tong & Chen, Li-Jun & Li, Nan & Liu, Zhao-Qing, 2018. "Bifunctional MOF-derived Co-N-doped carbon electrocatalysts for high-performance zinc-air batteries and MFCs," Energy, Elsevier, vol. 156(C), pages 95-102.
  • Handle: RePEc:eee:energy:v:156:y:2018:i:c:p:95-102
    DOI: 10.1016/j.energy.2018.05.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218309162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Peng & Chen, Bin & Xu, Haoran & Cai, Weizi & He, Wei & Ni, Meng, 2019. "Porous Co3O4 nanoplates as the active material for rechargeable Zn-air batteries with high energy efficiency and cycling stability," Energy, Elsevier, vol. 166(C), pages 1241-1248.
    2. Liu, Zhenning & Li, Zhiyuan & Ma, Jian & Dong, Xu & Ku, Wen & Wang, Mi & Sun, Hang & Liang, Song & Lu, Guolong, 2018. "Nitrogen and cobalt-doped porous biocarbon materials derived from corn stover as efficient electrocatalysts for aluminum-air batteries," Energy, Elsevier, vol. 162(C), pages 453-459.
    3. Zhang, Yi-Jie & Gao, Yi-Jun & Wang, Xiaoge & Ye, Qin & Zhang, Ya & Wu, Yu & Chen, Shu-Han & Ruan, Bo & Shi, Dean & Jiang, Tao & Tsai, Fang-Chang & Ma, Ning, 2022. "MoTe2 on metal-organic framework derived MoO2/N-doped carbon rods for enhanced sodium-ion storage properties," Energy, Elsevier, vol. 243(C).
    4. Mousavi, Seyed Ali & Mehrpooya, Mehdi, 2021. "Fabrication of copper centered metal organic framework and nitrogen, sulfur dual doped graphene oxide composite as a novel electrocatalyst for oxygen reduction reaction," Energy, Elsevier, vol. 214(C).
    5. Wei, Manhui & Wang, Keliang & Zuo, Yayu & Wang, Hengwei & Zhao, Siyuan & Zhang, Pengfei & Zhang, Songmao & Shui, Youfu & Pei, Pucheng & Chen, Junfeng, 2023. "Inner Zn layer and outer glutamic acid film as efficient dual-protective interface of Al anode in Al-air fuel cell," Energy, Elsevier, vol. 267(C).
    6. Liu, Xuan & Xue, Jilai, 2019. "The role of Al2Gd cuboids in the discharge performance and electrochemical behaviors of AZ31-Gd anode for Mg-air batteries," Energy, Elsevier, vol. 189(C).
    7. Chen, Bor-Yann & Liao, Jia-Hui & Hsueh, Chung-Chuan & Qu, Ziwei & Hsu, An-Wei & Chang, Chang-Tang & Zhang, Shuping, 2018. "Deciphering biostimulation strategy of using medicinal herbs and tea extracts for bioelectricity generation in microbial fuel cells," Energy, Elsevier, vol. 161(C), pages 1042-1054.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:156:y:2018:i:c:p:95-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.