IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v138y2017icp873-882.html
   My bibliography  Save this article

Synthesis and study of metal-based oxygen carriers (Cu, Co, Fe, Ni) and their interaction with supported metal oxides (Al2O3, CeO2, TiO2, ZrO2) in a chemical looping combustion system

Author

Listed:
  • Tijani, Mansour Mohammedramadan
  • Aqsha, Aqsha
  • Mahinpey, Nader

Abstract

Methane-fueled chemical looping combustion was investigated using transition metals (Cu, Co, Fe, Ni) that were deposited on support oxides (Al2O3, CeO2, TiO2, ZrO2) as oxygen carriers to find potential oxygen carrier candidates that had less interaction between the active-sites and supports. Less interaction between the active-sites and supports could help increasing the selectivity of CO2 among other gases (CO, H2) and to reduce the solid inventories in the CLC reactor system. The results showed that the average particle size for the synthesized samples was in the range of 8–119 nm. The effect of the sample initial weight in the TGA showed no significant effect on the oxidation/reduction reactions of metals. As the CH4 concentration increased, the reduction rate of oxygen carriers and coke formation increased. Highest oxygen detachment of supported oxygen carriers was reported to be 3.12% for Cu/CeO2 at 900 °C, 6.14% for Co/TiO2 at 950 °C, 6.83% for Fe/CeO2 at 950 °C, and 5.00% for Ni/CeO2 at 950 °C. Support oxides showed a significant effect on the oxidation and reduction activation energies, where Cu/Al2O3, Co/CeO2, Fe/ZrO2, and Ni/ZrO2 samples showed an improved performance among other combinations.

Suggested Citation

  • Tijani, Mansour Mohammedramadan & Aqsha, Aqsha & Mahinpey, Nader, 2017. "Synthesis and study of metal-based oxygen carriers (Cu, Co, Fe, Ni) and their interaction with supported metal oxides (Al2O3, CeO2, TiO2, ZrO2) in a chemical looping combustion system," Energy, Elsevier, vol. 138(C), pages 873-882.
  • Handle: RePEc:eee:energy:v:138:y:2017:i:c:p:873-882
    DOI: 10.1016/j.energy.2017.07.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217312781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.07.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Haibo & Guo, Lei & Zou, Xixian, 2015. "Chemical-looping auto-thermal reforming of biomass using Cu-based oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 408-415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nakano, Anna & Nakano, Jinichiro & Bennett, James, 2020. "Real-time high temperature investigations of an individual natural hematite ore particle for chemical looping oxygen exchange," Applied Energy, Elsevier, vol. 268(C).
    2. Lu, Chunqiang & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Lei & Zheng, Min & Fan, Bingbing & He, Fang & Wang, Hua, 2020. "Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment," Applied Energy, Elsevier, vol. 261(C).
    3. Lin, Shen & Gu, Zhenhua & Zhu, Xing & Wei, Yonggang & Long, Yanhui & Yang, Kun & He, Fang & Wang, Hua & Li, Kongzhai, 2020. "Synergy of red mud oxygen carrier with MgO and NiO for enhanced chemical-looping combustion," Energy, Elsevier, vol. 197(C).
    4. Antzaras, Andy N. & Lemonidou, Angeliki A., 2022. "Recent advances on materials and processes for intensified production of blue hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Wei, Guoqiang & Zhou, Huan & Huang, Zhen & Zheng, Anqing & Zhao, Kun & Lin, Yan & Chang, Guozhang & Zhao, Zengli & Li, Haibin & Fang, Yitian, 2021. "Reaction performance of Ce-enhanced hematite oxygen carrier in chemical looping reforming of biomass pyrolyzed gas coupled with CO2 splitting," Energy, Elsevier, vol. 215(PB).
    6. Yan, Jingchun & Shen, Laihong & Ou, Zhaowei & Wu, Jian & Jiang, Shouxi & Gu, Haiming, 2019. "Enhancing the performance of iron ore by introducing K and Na ions from biomass ashes in a CLC process," Energy, Elsevier, vol. 167(C), pages 168-180.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Yuyang & Tippayawong, Nakorn & Wei, Guoqiang & Huang, Zhen & Zhao, Kun & Jiang, Liqun & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2020. "Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification," Applied Energy, Elsevier, vol. 260(C).
    2. Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.
    3. Akbari-Emadabadi, S. & Rahimpour, M.R. & Hafizi, A. & Keshavarz, P., 2017. "Production of hydrogen-rich syngas using Zr modified Ca-Co bifunctional catalyst-sorbent in chemical looping steam methane reforming," Applied Energy, Elsevier, vol. 206(C), pages 51-62.
    4. García-Díez, E. & García-Labiano, F. & de Diego, L.F. & Abad, A. & Gayán, P. & Adánez, J. & Ruíz, J.A.C., 2016. "Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities," Applied Energy, Elsevier, vol. 169(C), pages 491-498.
    5. Di, Zichen & Yilmaz, Duygu & Biswas, Arijit & Cheng, Fangqin & Leion, Henrik, 2022. "Spinel ferrite-contained industrial materials as oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 307(C).
    6. Wang, Kun & Tian, Xin & Zhao, Haibo, 2016. "Sulfur behavior in chemical-looping combustion using a copper ore oxygen carrier," Applied Energy, Elsevier, vol. 166(C), pages 84-95.
    7. Xu, Dikai & Zhang, Yitao & Hsieh, Tien-Lin & Guo, Mengqing & Qin, Lang & Chung, Cheng & Fan, Liang-Shih & Tong, Andrew, 2018. "A novel chemical looping partial oxidation process for thermochemical conversion of biomass to syngas," Applied Energy, Elsevier, vol. 222(C), pages 119-131.
    8. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    9. Antzara, Andy & Heracleous, Eleni & Lemonidou, Angeliki A., 2016. "Energy efficient sorption enhanced-chemical looping methane reforming process for high-purity H2 production: Experimental proof-of-concept," Applied Energy, Elsevier, vol. 180(C), pages 457-471.
    10. Ming Yang & Da Song & Yang Li & Jinzeng Cao & Guoqiang Wei & Fang He, 2023. "High-Quality Syngas Production by Chemical Looping Gasification of Bituminite Based on NiFe 2 O 4 Oxygen Carrier," Energies, MDPI, vol. 16(8), pages 1-17, April.
    11. Qiu, Yu & Zhang, Shuai & Cui, Dongxu & Li, Min & Zeng, Jimin & Zeng, Dewang & Xiao, Rui, 2019. "Enhanced hydrogen production performance at intermediate temperatures through the synergistic effects of binary oxygen carriers," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:138:y:2017:i:c:p:873-882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.