IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v115y2016ip1p60-66.html
   My bibliography  Save this article

Dynamic vapor recompression in a reactive batch rectifier: Analysis and nonlinear control

Author

Listed:
  • Banerjee, Sudip
  • Jana, Amiya K.

Abstract

This work proposes a dynamic vapor recompressed batch reactive rectifier (VRBRR) for the butyl acetate system that operates with a dynamic compression ratio (CR). In this configuration, along with the CR, we manipulate either the overhead vapor inflow rate to the compressor or the external heat input to the reboiler for the purpose of coupling the thermal arrangement with the existing batch tower. To improve the product purity and the amount of distillate collection of the dynamic VRBRR, we further formulate a nonlinear extended generic model controller (EGMC) that requires state information for its simulation. For this, we develop a closed-loop high gain observer (HGO) for estimating a limited number of states, exclusively required for the EGMC. This results in a significant structural mismatch that is taken care of by the hybrid EGMC-HGO system. For the representative butyl acetate system, it is investigated that the proposed nonlinear controller outperforms a traditional PI controller in regulating the dynamic VRBRR.

Suggested Citation

  • Banerjee, Sudip & Jana, Amiya K., 2016. "Dynamic vapor recompression in a reactive batch rectifier: Analysis and nonlinear control," Energy, Elsevier, vol. 115(P1), pages 60-66.
  • Handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:60-66
    DOI: 10.1016/j.energy.2016.08.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216311902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.08.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Babu, G. Uday Bhaskar & Aditya, R. & Jana, Amiya K., 2012. "Economic feasibility of a novel energy efficient middle vessel batch distillation to reduce energy use," Energy, Elsevier, vol. 45(1), pages 626-633.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Guochang & Tian, Lixin & Liu, Menghe & Fu, Min & Sun, Mei, 2018. "How to optimize the development of carbon trading in China—Enlightenment from evolution rules of the EU carbon price," Applied Energy, Elsevier, vol. 211(C), pages 1039-1049.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jana, Amiya K. & Maiti, Debadrita, 2013. "An ideal internally heat integrated batch distillation with a jacketed still with application to a reactive system," Energy, Elsevier, vol. 57(C), pages 527-534.
    2. Modla, G. & Lang, P., 2013. "Heat pump systems with mechanical compression for batch distillation," Energy, Elsevier, vol. 62(C), pages 403-417.
    3. Modla, G., 2013. "Energy saving methods for the separation of a minimum boiling point azeotrope using an intermediate entrainer," Energy, Elsevier, vol. 50(C), pages 103-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:60-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.