IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v149y2025ics014098832500533x.html
   My bibliography  Save this article

Mixed-frequency Quantile Regression Forests for Value-at-Risk forecasting

Author

Listed:
  • Candila, Vincenzo
  • Petrella, Lea
  • Andreani, Mila

Abstract

In this paper, we introduce Mixed-Frequency Quantile Regression Forests, a novel approach for non-parametrically computing conditional quantiles with mixed-frequency data to forecast the Value-at-Risk (VaR). By integrating the Mixed-Data Sampling (MIDAS) approach into Quantile Regression Forests (QRF), the proposed MIDAS-QRF specification incorporates information from both high and low frequencies, which would otherwise be unusable for VaR estimation in the context of random forests. Furthermore, leveraging the QRF approach allows us to capture non-linear relationships while accommodating skewed and fat-tailed distributions. We also propose a dynamic extension, MIDAS-DQRF, which introduces lagged VaR predictions as additional covariates. We extensively apply the MIDAS-QRF and MIDAS-DQRF specifications to forecast the VaR of energy futures, specifically WTI, Brent, and Heating Oil indices. By evaluating the proposed models through backtesting procedures, we provide empirical evidence of the validity of MIDAS-QRF and MIDAS-DQRF. Our findings indicate that these models generate statistically sound forecasts and generally outperform popular alternatives in terms of VaR forecast accuracy.

Suggested Citation

  • Candila, Vincenzo & Petrella, Lea & Andreani, Mila, 2025. "Mixed-frequency Quantile Regression Forests for Value-at-Risk forecasting," Energy Economics, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:eneeco:v:149:y:2025:i:c:s014098832500533x
    DOI: 10.1016/j.eneco.2025.108706
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832500533X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2025.108706?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:149:y:2025:i:c:s014098832500533x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.