IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v272y2019i3p847-858.html
   My bibliography  Save this article

Solving the Weighted Capacitated Planned Maintenance Problem and its variants

Author

Listed:
  • Kuschel, Torben
  • Bock, Stefan

Abstract

This paper introduces, analyzes, and solves the Weighted Capacitated Planned Maintenance Problem (WCPMP) and its practically relevant variants. The problem pursues the finding of a maintenance schedule that incurs minimum total fixed and variable cost. Each executed maintenance activity guarantees the operability of the respective component for an interval of predetermined length. Moreover, a feasible schedule has to obey period-dependent predetermined time limitations for the scheduled maintenance activities. After providing a literature classification of the WCPMP and proving that the unweighted CPMP is strongly NP-hard, the complexity status of further problem variants is established. For instance, a solution procedure is proposed for the WCPMP that guarantees an optimal solution in strongly-polynomial time if the number of maintenance activities is a constant. Moreover, the algorithm becomes pseudo-polynomial if the number of periods is a constant. In order to deal with strongly NP-hard variants, a multi-state Tabu Search approach is proposed. Its efficiency is evaluated in a computational study.

Suggested Citation

  • Kuschel, Torben & Bock, Stefan, 2019. "Solving the Weighted Capacitated Planned Maintenance Problem and its variants," European Journal of Operational Research, Elsevier, vol. 272(3), pages 847-858.
  • Handle: RePEc:eee:ejores:v:272:y:2019:i:3:p:847-858
    DOI: 10.1016/j.ejor.2018.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718306131
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balachandran Vaidyanathan & Ravindra K. Ahuja & James B. Orlin, 2008. "The Locomotive Routing Problem," Transportation Science, INFORMS, vol. 42(4), pages 492-507, November.
    2. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 79443, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    4. Grigoriev, Alexander & van de Klundert, Joris & Spieksma, Frits C.R., 2006. "Modeling and solving the periodic maintenance problem," European Journal of Operational Research, Elsevier, vol. 172(3), pages 783-797, August.
    5. Kuschel, Torben & Bock, Stefan, 2016. "The weighted uncapacitated planned maintenance problem: Complexity and polyhedral properties," European Journal of Operational Research, Elsevier, vol. 250(3), pages 773-781.
    6. Cornuejols, G. & Sridharan, R. & Thizy, J. M., 1991. "A comparison of heuristics and relaxations for the capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 50(3), pages 280-297, February.
    7. Todosijević, Raca & Benmansour, Rachid & Hanafi, Saïd & Mladenović, Nenad & Artiba, Abdelhakim, 2016. "Nested general variable neighborhood search for the periodic maintenance problem," European Journal of Operational Research, Elsevier, vol. 252(2), pages 385-396.
    8. Torben Kuschel, 2017. "Capacitated Planned Maintenance," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-319-40289-5, July.
    9. Gopalan, Ram, 2014. "The Aircraft Maintenance Base Location Problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 634-642.
    10. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maquirriain, Javier & García-Villoria, Alberto & Pastor, Rafael, 2024. "Matheuristics for scheduling of maintenance service with linear operation cost and step function maintenance cost," European Journal of Operational Research, Elsevier, vol. 315(1), pages 73-87.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuschel, Torben & Bock, Stefan, 2016. "The weighted uncapacitated planned maintenance problem: Complexity and polyhedral properties," European Journal of Operational Research, Elsevier, vol. 250(3), pages 773-781.
    2. Maquirriain, Javier & García-Villoria, Alberto & Pastor, Rafael, 2024. "Matheuristics for scheduling of maintenance service with linear operation cost and step function maintenance cost," European Journal of Operational Research, Elsevier, vol. 315(1), pages 73-87.
    3. Timo Gschwind & Stefan Irnich & Simon Emde & Christian Tilk, 2018. "Branch-Cut-and-Price for the Scheduling Deliveries with Time Windows in a Direct Shipping Network," Working Papers 1805, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    4. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    5. Meyer, Anne & Amberg, Boris, 2018. "Transport concept selection considering supplier milk runs – An integrated model and a case study from the automotive industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 147-169.
    6. Simon Emde, 2017. "Scheduling the replenishment of just-in-time supermarkets in assembly plants," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 321-345, January.
    7. Masood Fathi & Victoria Rodríguez & Dalila B.M.M. Fontes & Maria Jesus Alvarez, 2016. "A modified particle swarm optimisation algorithm to solve the part feeding problem at assembly lines," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 878-893, February.
    8. Jun Wang & Jingbo Yin & Rafi Ullah Khan & Siqi Wang & Tie Zheng, 2021. "A Study of Inbound Logistics Mode Based on JIT Production in Cruise Ship Construction," Sustainability, MDPI, vol. 13(3), pages 1-18, February.
    9. Timo Gschwind & Stefan Irnich & Christian Tilk & Simon Emde, 2020. "Branch-cut-and-price for scheduling deliveries with time windows in a direct shipping network," Journal of Scheduling, Springer, vol. 23(3), pages 363-377, June.
    10. Mustapha Sali & Evren Sahin, 2016. "Line feeding optimization for Just in Time assembly lines: an application to the automotive industry," Post-Print hal-01265041, HAL.
    11. Wenquan Dong & Mingzhou Jin & Yanyan Wang & Peter Kelle, 2021. "Retrieval scheduling in crane-based 3D automated retrieval and storage systems with shuttles," Annals of Operations Research, Springer, vol. 302(1), pages 111-135, July.
    12. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2020. "Loading tow trains ergonomically for just-in-time part supply," European Journal of Operational Research, Elsevier, vol. 284(1), pages 325-344.
    13. Dulebenets, Maxim A., 2019. "A Delayed Start Parallel Evolutionary Algorithm for just-in-time truck scheduling at a cross-docking facility," International Journal of Production Economics, Elsevier, vol. 212(C), pages 236-258.
    14. Quetschlich, Mathias & Moetz, André & Otto, Boris, 2021. "Optimisation model for multi-item multi-echelon supply chains with nested multi-level products," European Journal of Operational Research, Elsevier, vol. 290(1), pages 144-158.
    15. Robin P. Nicolai & Rommert Dekker, 2008. "Optimal Maintenance of Multi-component Systems: A Review," Springer Series in Reliability Engineering, in: Complex System Maintenance Handbook, chapter 11, pages 263-286, Springer.
    16. Sali, Mustapha & Sahin, Evren, 2016. "Line feeding optimization for Just in Time assembly lines: An application to the automotive industry," International Journal of Production Economics, Elsevier, vol. 174(C), pages 54-67.
    17. Emde, Simon & Gendreau, Michel, 2017. "Scheduling in-house transport vehicles to feed parts to automotive assembly lines," European Journal of Operational Research, Elsevier, vol. 260(1), pages 255-267.
    18. Nikos P. Rachaniotis & Theodore G. Voutsinas & Costas P. Pappis, 2013. "Scheduling periodic preventive maintenance with a single server in a finite horizon," International Journal of Decision Sciences, Risk and Management, Inderscience Enterprises Ltd, vol. 5(1), pages 80-87.
    19. Lijun Liu & Zhixin Long & Chuangchuang Kou & Haozeng Guo & Xinyu Li, 2023. "Evaluation of the Environmental Cost of Integrated Inbound Logistics: A Case Study of a Gigafactory of a Chinese Logistics Firm," Sustainability, MDPI, vol. 15(15), pages 1-20, July.
    20. Rui Xu & Yumiao Huang & Wei Xiao, 2023. "A Two-Level Variable Neighborhood Descent for a Split Delivery Clustered Vehicle Routing Problem with Soft Cluster Conflicts and Customer-Related Costs," Sustainability, MDPI, vol. 15(9), pages 1-22, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:272:y:2019:i:3:p:847-858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.