IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v218y2012i1p48-57.html
   My bibliography  Save this article

Connectivity-and-hop-constrained design of electricity distribution networks

Author

Listed:
  • Rossi, André
  • Aubry, Alexis
  • Jacomino, Mireille

Abstract

This paper addresses the problem of designing the configuration of an interconnected electricity distribution network, so as to maximize the minimum power margin over the feeders. In addition to the limitation of feeder power capacity, the distance (as hop count) between any customer and its allocated feeder is also limited for preventing power losses and voltage drops. Feasibility conditions are studied and a complexity analysis is performed before introducing a heuristic algorithm and two integer linear programming formulations for addressing the problem. A cutting-plane algorithm relying on the generation of two classes of cuts for enforcing connectivity and distance requirements respectively is proposed for solving the second integer linear programming formulation. All the approaches are then compared on a set of 190 instances before discussing their performances.

Suggested Citation

  • Rossi, André & Aubry, Alexis & Jacomino, Mireille, 2012. "Connectivity-and-hop-constrained design of electricity distribution networks," European Journal of Operational Research, Elsevier, vol. 218(1), pages 48-57.
  • Handle: RePEc:eee:ejores:v:218:y:2012:i:1:p:48-57
    DOI: 10.1016/j.ejor.2011.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711009052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valeria Leggieri & Paolo Nobili & Chefi Triki, 2008. "Minimum power multicasting problem in wireless networks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(2), pages 295-311, October.
    2. Avella, Pasquale & Villacci, Domenico & Sforza, Antonio, 2005. "A Steiner arborescence model for the feeder reconfiguration in electric distribution networks," European Journal of Operational Research, Elsevier, vol. 164(2), pages 505-509, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vizcaino González, José Federico & Lyra, Christiano & Usberti, Fábio Luiz, 2012. "A pseudo-polynomial algorithm for optimal capacitor placement on electric power distribution networks," European Journal of Operational Research, Elsevier, vol. 222(1), pages 149-156.
    2. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2020. "Cost minimization of large-scale infrastructure for electricity generation and transmission," Omega, Elsevier, vol. 96(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Montemanni & V. Leggieri, 2011. "A branch and price algorithm for the minimum power multicasting problem in wireless sensor networks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 327-342, December.
    2. Marika Ivanova & Dag Haugland, 2019. "Integer programming formulations for the shared multicast tree problem," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 927-956, October.
    3. Fu, Zhang-Hua & Hao, Jin-Kao, 2014. "Breakout local search for the Steiner tree problem with revenue, budget and hop constraints," European Journal of Operational Research, Elsevier, vol. 232(1), pages 209-220.
    4. Ferrer-Martí, L. & Domenech, B. & García-Villoria, A. & Pastor, R., 2013. "A MILP model to design hybrid wind–photovoltaic isolated rural electrification projects in developing countries," European Journal of Operational Research, Elsevier, vol. 226(2), pages 293-300.
    5. Xia, Liang & Chan, Ming-yin & Qu, Minglu & Xu, Xiangguo & Deng, Shiming, 2011. "A fundamental study on the optimal/near-optimal shape of a network for energy distribution," Energy, Elsevier, vol. 36(11), pages 6471-6478.
    6. Karla B. Freitas & Márcio S. Arantes & Claudio F. M. Toledo & Alexandre C. B. Delbem, 2020. "MIQP model and improvement heuristic for power loss minimization in distribution system with network reconfiguration," Journal of Heuristics, Springer, vol. 26(1), pages 59-81, February.
    7. Vizcaino González, José Federico & Lyra, Christiano & Usberti, Fábio Luiz, 2012. "A pseudo-polynomial algorithm for optimal capacitor placement on electric power distribution networks," European Journal of Operational Research, Elsevier, vol. 222(1), pages 149-156.
    8. Xiangyong Li & Y. P. Aneja, 2012. "A Branch-and-Cut Approach for the Minimum-Energy Broadcasting Problem in Wireless Networks," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 443-456, August.
    9. Costa, Alysson M. & Cordeau, Jean-François & Laporte, Gilbert, 2008. "Fast heuristics for the Steiner tree problem with revenues, budget and hop constraints," European Journal of Operational Research, Elsevier, vol. 190(1), pages 68-78, October.
    10. János Barta & Valeria Leggieri & Roberto Montemanni & Paolo Nobili & Chefi Triki, 2011. "Minimum power multicasting in wireless networks under probabilistic node failures," Computational Optimization and Applications, Springer, vol. 49(1), pages 193-212, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:218:y:2012:i:1:p:48-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.