IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v205y2010i3p540-551.html
   My bibliography  Save this article

Surrogate constraint normalization for the set covering problem

Author

Listed:
  • Ablanedo-Rosas, José H.
  • Rego, César

Abstract

The set covering problem (SCP) is central in a wide variety of practical applications for which finding good feasible solutions quickly (often in real-time) is crucial. Surrogate constraint normalization is a classical technique used to derive appropriate weights for surrogate constraint relaxations in mathematical programming. This framework remains the core of the most effective constructive heuristics for the solution of the SCP chiefly represented by the widely-used Chvátal method. This paper introduces a number of normalization rules and demonstrates their superiority to the classical Chvátal rule, especially when solving large scale and real-world instances. Directions for new advances on the creation of more elaborate normalization rules for surrogate heuristics are also provided.

Suggested Citation

  • Ablanedo-Rosas, José H. & Rego, César, 2010. "Surrogate constraint normalization for the set covering problem," European Journal of Operational Research, Elsevier, vol. 205(3), pages 540-551, September.
  • Handle: RePEc:eee:ejores:v:205:y:2010:i:3:p:540-551
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00113-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grossman, Tal & Wool, Avishai, 1997. "Computational experience with approximation algorithms for the set covering problem," European Journal of Operational Research, Elsevier, vol. 101(1), pages 81-92, August.
    2. Alminana, Marcos & Pastor, Jesus T., 1997. "An adaptation of SH heuristic to the location set covering problem," European Journal of Operational Research, Elsevier, vol. 100(3), pages 586-593, August.
    3. Fred Glover, 1975. "Surrogate Constraint Duality in Mathematical Programming," Operations Research, INFORMS, vol. 23(3), pages 434-451, June.
    4. Lorena, Luiz Antonio N. & Belo Lopes, Fabio, 1994. "A surrogate heuristic for set covering problems," European Journal of Operational Research, Elsevier, vol. 79(1), pages 138-150, November.
    5. Fred Glover, 1965. "A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem," Operations Research, INFORMS, vol. 13(6), pages 879-919, December.
    6. Egon Balas & Maria C. Carrera, 1996. "A Dynamic Subgradient-Based Branch-and-Bound Procedure for Set Covering," Operations Research, INFORMS, vol. 44(6), pages 875-890, December.
    7. Marshall L. Fisher & Alexander H. G. Rinnooy Kan, 1988. "The Design, Analysis and Implementation of Heuristics," Management Science, INFORMS, vol. 34(3), pages 263-265, March.
    8. Taillard, Eric D. & Waelti, Philippe & Zuber, Jacques, 2008. "Few statistical tests for proportions comparison," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1336-1350, March.
    9. Harvey J. Greenberg & William P. Pierskalla, 1970. "Surrogate Mathematical Programming," Operations Research, INFORMS, vol. 18(5), pages 924-939, October.
    10. Haddadi, Salim, 1997. "Simple Lagrangian heuristic for the set covering problem," European Journal of Operational Research, Elsevier, vol. 97(1), pages 200-204, February.
    11. Alberto Caprara & Matteo Fischetti & Paolo Toth, 1999. "A Heuristic Method for the Set Covering Problem," Operations Research, INFORMS, vol. 47(5), pages 730-743, October.
    12. Marshall L. Fisher & Pradeep Kedia, 1990. "Optimal Solution of Set Covering/Partitioning Problems Using Dual Heuristics," Management Science, INFORMS, vol. 36(6), pages 674-688, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Glover, Fred, 2013. "Advanced greedy algorithms and surrogate constraint methods for linear and quadratic knapsack and covering problems," European Journal of Operational Research, Elsevier, vol. 230(2), pages 212-225.
    2. Alidaee, Bahram, 2014. "Zero duality gap in surrogate constraint optimization: A concise review of models," European Journal of Operational Research, Elsevier, vol. 232(2), pages 241-248.
    3. Jihong Yan & Wenliang Cheng & Chengyu Wang & Jun Liu & Ming Gao & Aoying Zhou, 2015. "Optimizing word set coverage for multi-event summarization," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 996-1015, November.
    4. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    2. Patrizia Beraldi & Andrzej Ruszczyński, 2002. "The Probabilistic Set-Covering Problem," Operations Research, INFORMS, vol. 50(6), pages 956-967, December.
    3. Wang, Yiyuan & Pan, Shiwei & Al-Shihabi, Sameh & Zhou, Junping & Yang, Nan & Yin, Minghao, 2021. "An improved configuration checking-based algorithm for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 294(2), pages 476-491.
    4. Cochran, Jeffery K. & Marquez Uribe, Alberto, 2005. "A set covering formulation for agile capacity planning within supply chains," International Journal of Production Economics, Elsevier, vol. 95(2), pages 139-149, February.
    5. Marco Antonio Boschetti & Vittorio Maniezzo, 2022. "Matheuristics: using mathematics for heuristic design," 4OR, Springer, vol. 20(2), pages 173-208, June.
    6. Bautista, Joaquín & Pereira, Jordi, 2006. "Modeling the problem of locating collection areas for urban waste management. An application to the metropolitan area of Barcelona," Omega, Elsevier, vol. 34(6), pages 617-629, December.
    7. Yagiura, Mutsunori & Kishida, Masahiro & Ibaraki, Toshihide, 2006. "A 3-flip neighborhood local search for the set covering problem," European Journal of Operational Research, Elsevier, vol. 172(2), pages 472-499, July.
    8. Galvao, Roberto D. & Gonzalo Acosta Espejo, Luis & Boffey, Brian, 2000. "A comparison of Lagrangean and surrogate relaxations for the maximal covering location problem," European Journal of Operational Research, Elsevier, vol. 124(2), pages 377-389, July.
    9. Gao, Chao & Yao, Xin & Weise, Thomas & Li, Jinlong, 2015. "An efficient local search heuristic with row weighting for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 750-761.
    10. Alidaee, Bahram, 2014. "Zero duality gap in surrogate constraint optimization: A concise review of models," European Journal of Operational Research, Elsevier, vol. 232(2), pages 241-248.
    11. Kedong Yan & Dongjing Miao & Cui Guo & Chanying Huang, 2021. "Efficient feature selection for logical analysis of large-scale multi-class datasets," Journal of Combinatorial Optimization, Springer, vol. 42(1), pages 1-23, July.
    12. Lan, Guanghui & DePuy, Gail W. & Whitehouse, Gary E., 2007. "An effective and simple heuristic for the set covering problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1387-1403, February.
    13. Ibrahim, Walid & El-Sayed, Hesham & El-Chouemie, Amr & Amer, Hoda, 2009. "An adaptive heuristic algorithm for VLSI test vectors selection," European Journal of Operational Research, Elsevier, vol. 199(3), pages 630-639, December.
    14. Lorena, Luiz Antonio N. & Goncalves Narciso, Marcelo, 2002. "Using logical surrogate information in Lagrangean relaxation: An application to symmetric traveling salesman problems," European Journal of Operational Research, Elsevier, vol. 138(3), pages 473-483, May.
    15. Jihong Yan & Wenliang Cheng & Chengyu Wang & Jun Liu & Ming Gao & Aoying Zhou, 2015. "Optimizing word set coverage for multi-event summarization," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 996-1015, November.
    16. Alberto Caprara & Matteo Fischetti & Paolo Toth, 1999. "A Heuristic Method for the Set Covering Problem," Operations Research, INFORMS, vol. 47(5), pages 730-743, October.
    17. Li, Shengyin & Huang, Yongxi, 2014. "Heuristic approaches for the flow-based set covering problem with deviation paths," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 144-158.
    18. Youngho Lee & Hanif D. Sherali & Ikhyun Kwon & Seongin Kim, 2006. "A new reformulation approach for the generalized partial covering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(2), pages 170-179, March.
    19. Renaud Chicoisne, 2023. "Computational aspects of column generation for nonlinear and conic optimization: classical and linearized schemes," Computational Optimization and Applications, Springer, vol. 84(3), pages 789-831, April.
    20. Hernández-Leandro, Noberto A. & Boyer, Vincent & Salazar-Aguilar, M. Angélica & Rousseau, Louis-Martin, 2019. "A matheuristic based on Lagrangian relaxation for the multi-activity shift scheduling problem," European Journal of Operational Research, Elsevier, vol. 272(3), pages 859-867.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:205:y:2010:i:3:p:540-551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.