IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v194y2009i3p888-900.html
   My bibliography  Save this article

Using agents for solving a multi-commodity-flow problem

Author

Listed:
  • Weiskircher, Rene
  • Kontoleon, Nectarios
  • Garcia-Flores, Rodolfo
  • Dunstall, Simon

Abstract

We investigate a commodity trading problem in a flow network with arbitrary topology where sinks combine commodities into bundles in order to generate profits. Our focus is the profit maximization problem for the trading network under both central and distributed control. We compute solutions for the central control problem using an integer linear program while we compute solutions for the distributed case by implementing the nodes in the network as software-agents that exchange messages in order to establish profitable trades. We report on computational results using both methods and demonstrate that there is a connection between agent profits and a centrality measure developed for the problem. We also demonstrate that with our current agent strategy, there is a trade-off between the agents acting too quickly before enough information is available and waiting too long and thus giving each agent too much information and thus too much power over the outcome.

Suggested Citation

  • Weiskircher, Rene & Kontoleon, Nectarios & Garcia-Flores, Rodolfo & Dunstall, Simon, 2009. "Using agents for solving a multi-commodity-flow problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 888-900, May.
  • Handle: RePEc:eee:ejores:v:194:y:2009:i:3:p:888-900
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00129-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dudek, Gregor & Stadtler, Hartmut, 2005. "Negotiation-based collaborative planning between supply chains partners," European Journal of Operational Research, Elsevier, vol. 163(3), pages 668-687, June.
    2. Mark Klein & Peyman Faratin & Hiroki Sayama & Yaneer Bar-Yam, 2003. "Negotiating Complex Contracts," Group Decision and Negotiation, Springer, vol. 12(2), pages 111-125, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Homberger, Jörg & Fink, Andreas, 2017. "Generic negotiation mechanisms with side payments – Design, analysis and application for decentralized resource-constrained multi-project scheduling problems," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1001-1012.
    2. Lang, Fabian & Fink, Andreas & Brandt, Tobias, 2016. "Design of automated negotiation mechanisms for decentralized heterogeneous machine scheduling," European Journal of Operational Research, Elsevier, vol. 248(1), pages 192-203.
    3. Siao-Leu Phouratsamay & Safia Kedad-Sidhoum & Fanny Pascual, 2021. "Coordination of a two-level supply chain with contracts," 4OR, Springer, vol. 19(2), pages 235-264, June.
    4. Beatriz Andres & Vicente Javier Blanes, 2020. "A Negotiation Approach to Support the Strategies Alignment Process in Collaborative Networks," Sustainability, MDPI, vol. 12(7), pages 1-30, April.
    5. Morales, Dolores Romero & Vermeulen, Dries, 2009. "Existence of equilibria in a decentralized two-level supply chain," European Journal of Operational Research, Elsevier, vol. 197(2), pages 642-658, September.
    6. Kerkkamp, R.B.O. & van den Heuvel, W. & Wagelmans, A.P.M., 2019. "Two-echelon lot-sizing with asymmetric information and continuous type space," Omega, Elsevier, vol. 87(C), pages 158-176.
    7. Suzuki, Yoshinori, 2016. "A dual-objective metaheuristic approach to solve practical pollution routing problem," International Journal of Production Economics, Elsevier, vol. 176(C), pages 143-153.
    8. Gansterer, Margaretha & Födermayr, Patrick & Hartl, Richard F., 2021. "The capacitated multi-level lot-sizing problem with distributed agents," International Journal of Production Economics, Elsevier, vol. 235(C).
    9. Weraikat, Dua & Zanjani, Masoumeh Kazemi & Lehoux, Nadia, 2016. "Two-echelon pharmaceutical reverse supply chain coordination with customers incentives," International Journal of Production Economics, Elsevier, vol. 176(C), pages 41-52.
    10. Ronghuo Zheng & Tinglong Dai & Katia Sycara & Nilanjan Chakraborty, 2016. "Automated Multilateral Negotiation on Multiple Issues with Private Information," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 612-628, November.
    11. Bernard Archimède & Muhammad Ali Memon & Karim Ishak, 2016. "Combining multi-agent model, SOA and ontologies in a distributed and interoperable architecture to manage multi-site production projects," Post-Print hal-01945210, HAL.
    12. Zhang, Linlan & Song, Haigang & Chen, Xueguang & Hong, Liu, 2011. "A simultaneous multi-issue negotiation through autonomous agents," European Journal of Operational Research, Elsevier, vol. 210(1), pages 95-105, April.
    13. Wikner, Joakim & Naim, Mohamed M. & Spiegler, Virginia L.M. & Lin, Junyi, 2017. "IOBPCS based models and decoupling thinking," International Journal of Production Economics, Elsevier, vol. 194(C), pages 153-166.
    14. DEFRYN, Christof & SÖRENSEN, Kenneth & CORNELISSENS, Trijntje, 2015. "The selective vehicle routing problem in a collaborative environment," Working Papers 2015006, University of Antwerp, Faculty of Business and Economics.
    15. Jorge E. Hernández & Andrew C. Lyons & Konstantinos Stamatopoulos, 2016. "A DSS-Based Framework for Enhancing Collaborative Web-Based Operations Management in Manufacturing SME Supply Chains," Group Decision and Negotiation, Springer, vol. 25(6), pages 1237-1259, November.
    16. Stadtler, Hartmut, 2005. "Supply chain management and advanced planning--basics, overview and challenges," European Journal of Operational Research, Elsevier, vol. 163(3), pages 575-588, June.
    17. Kovács, András & Egri, Péter & Kis, Tamás & Váncza, József, 2013. "Inventory control in supply chains: Alternative approaches to a two-stage lot-sizing problem," International Journal of Production Economics, Elsevier, vol. 143(2), pages 385-394.
    18. Ivan Marsa-Maestre & Miguel A. Lopez-Carmona & Juan A. Carral & Guillermo Ibanez, 2013. "A Recursive Protocol for Negotiating Contracts Under Non-monotonic Preference Structures," Group Decision and Negotiation, Springer, vol. 22(1), pages 1-43, January.
    19. François Galasso & Caroline Thierry, 2008. "Cooperation Support In A Dyadic Supply Chain," Working Papers hal-00235808, HAL.
    20. Albrecht, Martin & Stadtler, Hartmut, 2015. "Coordinating decentralized linear programs by exchange of primal information," European Journal of Operational Research, Elsevier, vol. 247(3), pages 788-796.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:194:y:2009:i:3:p:888-900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.