IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v192y2009i1p29-40.html
   My bibliography  Save this article

Heuristic approaches to large-scale periodic packing of irregular shapes on a rectangular sheet

Author

Listed:
  • Costa, M. Teresa
  • Gomes, A. Miguel
  • Oliveira, José F.

Abstract

The nesting problem is a two-dimensional cutting and packing problem where the small pieces to cut have irregular shapes. A particular case of the nesting problem occurs when congruent copies of one single shape have to fill, as much as possible, a limited sheet. Traditional approaches to the nesting problem have difficulty to tackle with high number of pieces to place. Additionally, if the orientation of the given shape is not a constraint, the general nesting approaches are not particularly successful. This problem arises in practice in several industrial contexts such as footwear, metalware and furniture. A possible approach is the periodic placement of the shapes, in a lattice way. In this paper, we propose three heuristic approaches to solve this particular case of nesting problems. Experimental results are compared with published results in literature and additional results obtained from new instances are also provided.

Suggested Citation

  • Costa, M. Teresa & Gomes, A. Miguel & Oliveira, José F., 2009. "Heuristic approaches to large-scale periodic packing of irregular shapes on a rectangular sheet," European Journal of Operational Research, Elsevier, vol. 192(1), pages 29-40, January.
  • Handle: RePEc:eee:ejores:v:192:y:2009:i:1:p:29-40
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00932-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    2. Stoyan, Yu G. & Patsuk, V. N., 2000. "A method of optimal lattice packing of congruent oriented polygons in the plane," European Journal of Operational Research, Elsevier, vol. 124(1), pages 204-216, July.
    3. Dowsland, Kathryn A. & Dowsland, William B., 1992. "Packing problems," European Journal of Operational Research, Elsevier, vol. 56(1), pages 2-14, January.
    4. Stoyan, Yu. G. & Pankratov, A. V., 1999. "Regular packing of congruent polygons on the rectangular sheet," European Journal of Operational Research, Elsevier, vol. 113(3), pages 653-675, March.
    5. Gomes, A. Miguel & Oliveira, Jose F., 2002. "A 2-exchange heuristic for nesting problems," European Journal of Operational Research, Elsevier, vol. 141(2), pages 359-370, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jingfa & Jiang, Yucong & Li, Gang & Xue, Yu & Liu, Zhaoxia & Zhang, Zhen, 2015. "Heuristic-based energy landscape paving for the circular packing problem with performance constraints of equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 166-174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:192:y:2009:i:1:p:29-40. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.