IDEAS home Printed from
   My bibliography  Save this article

Complexity of local search for the p-median problem


  • Alekseeva, Ekaterina
  • Kochetov, Yuri
  • Plyasunov, Alexander


We study the complexity of finding local minima for the p-median problem. The relationship between Swap local optima, 0-1 local saddle points, and classical Karush-Kuhn-Tucker conditions is presented. It is shown that the local search problems with some neighborhoods are tight PLS-complete. Moreover, the standard local descent algorithm takes exponential number of iterations in the worst case regardless of the tie-breaking and pivoting rules used. To illustrate this property, we present a family of instances where some local minima may be hard to find. Computational results with different pivoting rules for random and Euclidean test instances are discussed. These empirical results show that the standard local descent algorithm is polynomial in average for some pivoting rules.

Suggested Citation

  • Alekseeva, Ekaterina & Kochetov, Yuri & Plyasunov, Alexander, 2008. "Complexity of local search for the p-median problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 736-752, December.
  • Handle: RePEc:eee:ejores:v:191:y:2008:i:3:p:736-752

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Mladenovic, Nenad & Brimberg, Jack & Hansen, Pierre & Moreno-Perez, Jose A., 2007. "The p-median problem: A survey of metaheuristic approaches," European Journal of Operational Research, Elsevier, vol. 179(3), pages 927-939, June.
    2. Orlin, James & Punnen, Abraham & Schulz, Andreas, 2004. "Approximate Local Search in Combinatorial Optimization," Working papers 4325-03, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:191:y:2008:i:3:p:736-752. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.