IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v120y2000i2p277-288.html
   My bibliography  Save this article

Scheduling jobs with release dates and tails on two unrelated parallel machines to minimize the makespan

Author

Listed:
  • Lancia, Giuseppe

Abstract

No abstract is available for this item.

Suggested Citation

  • Lancia, Giuseppe, 2000. "Scheduling jobs with release dates and tails on two unrelated parallel machines to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 120(2), pages 277-288, January.
  • Handle: RePEc:eee:ejores:v:120:y:2000:i:2:p:277-288
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(99)00156-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlier, Jacques, 1982. "The one-machine sequencing problem," European Journal of Operational Research, Elsevier, vol. 11(1), pages 42-47, September.
    2. B. J. Lageweg & J. K. Lenstra & A. H. G. Rinnooy Kan, 1976. "Minimizing maximum lateness on one machine: computational experience and some applications," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 30(1), pages 25-41, March.
    3. Carlier, Jacques, 1987. "Scheduling jobs with release dates and tails on identical machines to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 29(3), pages 298-306, June.
    4. Graham McMahon & Michael Florian, 1975. "On Scheduling with Ready Times and Due Dates to Minimize Maximum Lateness," Operations Research, INFORMS, vol. 23(3), pages 475-482, June.
    5. Barcia, Paulo & Jornsten, Kurt, 1990. "Improved Lagrangean decomposition: An application to the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 46(1), pages 84-92, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Kai & Li Hui & Cheng Bayi & Luo Qing, 2015. "Uniform Parallel Machine Scheduling Problem with Controllable Delivery Times," Journal of Systems Science and Information, De Gruyter, vol. 3(6), pages 525-537, December.
    2. Yantong Li & Jean-François Côté & Leandro Callegari-Coelho & Peng Wu, 2022. "Novel Formulations and Logic-Based Benders Decomposition for the Integrated Parallel Machine Scheduling and Location Problem," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1048-1069, March.
    3. Zhi Pei & Mingzhong Wan & Ziteng Wang, 2020. "A new approximation algorithm for unrelated parallel machine scheduling with release dates," Annals of Operations Research, Springer, vol. 285(1), pages 397-425, February.
    4. Giorgi Tadumadze & Simon Emde & Heiko Diefenbach, 2020. "Exact and heuristic algorithms for scheduling jobs with time windows on unrelated parallel machines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 461-497, June.
    5. Tony T. Tran & Arthur Araujo & J. Christopher Beck, 2016. "Decomposition Methods for the Parallel Machine Scheduling Problem with Setups," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 83-95, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander A. Lazarev & Nikolay Pravdivets & Frank Werner, 2020. "On the Dual and Inverse Problems of Scheduling Jobs to Minimize the Maximum Penalty," Mathematics, MDPI, vol. 8(7), pages 1-15, July.
    2. Dauzere-Peres, Stephane, 1995. "A procedure for the one-machine sequencing problem with dependent jobs," European Journal of Operational Research, Elsevier, vol. 81(3), pages 579-589, March.
    3. Ivens, Philip & Lambrecht, Marc, 1996. "Extending the shifting bottleneck procedure to real-life applications," European Journal of Operational Research, Elsevier, vol. 90(2), pages 252-268, April.
    4. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    5. Wenda Zhang & Jason J. Sauppe & Sheldon H. Jacobson, 2021. "An Improved Branch-and-Bound Algorithm for the One-Machine Scheduling Problem with Delayed Precedence Constraints," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1091-1102, July.
    6. Pan, Yunpeng & Shi, Leyuan, 2006. "Branch-and-bound algorithms for solving hard instances of the one-machine sequencing problem," European Journal of Operational Research, Elsevier, vol. 168(3), pages 1030-1039, February.
    7. Reha Uzsoy & Chung‐Yee Lee & Louis A. Martin‐Vega, 1992. "Scheduling semiconductor test operations: Minimizing maximum lateness and number of tardy jobs on a single machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 369-388, April.
    8. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    9. Nodari Vakhania, 2019. "Dynamic Restructuring Framework for Scheduling with Release Times and Due-Dates," Mathematics, MDPI, vol. 7(11), pages 1-42, November.
    10. John J. Kanet & V. Sridharan, 2000. "Scheduling with Inserted Idle Time: Problem Taxonomy and Literature Review," Operations Research, INFORMS, vol. 48(1), pages 99-110, February.
    11. Carlier, J. & Pinson, E. & Sahli, A. & Jouglet, A., 2020. "An O(n2) algorithm for time-bound adjustments for the cumulative scheduling problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 468-476.
    12. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    13. Federico Alonso-Pecina & José Alberto Hernández & José Maria Sigarreta & Nodari Vakhania, 2020. "Fast Approximation for Scheduling One Machine," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    14. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    15. Helena Ramalhinho-Lourenço, 1998. "A polynomial algorithm for special case of the one-machine scheduling problem with time-lags," Economics Working Papers 339, Department of Economics and Business, Universitat Pompeu Fabra.
    16. Philip Kaminsky, 2003. "The effectiveness of the longest delivery time rule for the flow shop delivery time problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(3), pages 257-272, April.
    17. Kailiang Xu & Zuren Feng & Liangjun Ke, 2010. "A branch and bound algorithm for scheduling jobs with controllable processing times on a single machine to meet due dates," Annals of Operations Research, Springer, vol. 181(1), pages 303-324, December.
    18. Nodari Vakhania & Frank Werner, 2021. "Branch Less, Cut More and Schedule Jobs with Release and Delivery Times on Uniform Machines," Mathematics, MDPI, vol. 9(6), pages 1-18, March.
    19. Helena Ramalhinho-Lourenço & Olivier C. Martin & Thomas Stützle, 2000. "Iterated local search," Economics Working Papers 513, Department of Economics and Business, Universitat Pompeu Fabra.
    20. Mukherjee, Saral & Chatterjee, A.K., 2006. "The average shadow price for MILPs with integral resource availability and its relationship to the marginal unit shadow price," European Journal of Operational Research, Elsevier, vol. 169(1), pages 53-64, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:120:y:2000:i:2:p:277-288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.