IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v489y2024ics0304380024000127.html
   My bibliography  Save this article

Simulating productivity changes of epipelagic, mesopelagic, and bathypelagic taxa using a depth-resolved, end-to-end food web model for the oceanic Gulf of Mexico

Author

Listed:
  • Calhoun-Grosch, Stacy
  • Ruzicka, Jim J.
  • Robinson, Kelly L.
  • Wang, Verena H.
  • Sutton, Tracey
  • Ainsworth, Cameron
  • Hernandez, Frank

Abstract

Open-ocean and deep-sea ecosystems can be difficult to model due to the challenges of incorporating important dynamics such as diel vertical migration and particle sinking, as well as the absence of long-term datasets for deep-sea taxa abundance, distribution, and physiological parameters. The data collection that followed the Deepwater Horizon Oil Spill provided the unique opportunity to model the oceanic Gulf of Mexico in a way that was not previously possible. Using new biomass datasets, we developed a depth-resolved food web model to better understand the trophic dynamics of the oceanic Gulf of Mexico. The model tracks vertical energy transfer in the water column between three depth zones: the epipelagic (0–200 m), mesopelagic (200–1000 m) and bathypelagic (>1000 m). This functionality allows us to demonstrate how changes in the biomass of specific functional groups, such as large jellyfish, non-copepod mesozooplankton, decapods, and strongly migrating mesopelagic fishes affect the food web within each depth zone. Non-copepod mesozooplankton and euphausiids were shown to have greater importance in energy transfer, particularly in meso‑ and bathypelagic depth zones, than other functional groups. Increasing large jellyfish biomass by 25 % resulted in decreases in biomass of most of the other forage functional groups, particularly mesopelagic fishes and small gelatinous carnivores, two groups that actively compete with and are consumed by large jellyfish. A simulated decrease in strongly migrating mesopelagic fish biomass of 25 % increased the biomass of functional groups presumed to be in competition with strongly migrating mesopelagic fishes, such as weak and non-migrating mesopelagic fishes. The static scenarios presented here lay the groundwork for interesting dynamic simulations with this modeling platform that will help determine how these impacts may affect the food web over time.

Suggested Citation

  • Calhoun-Grosch, Stacy & Ruzicka, Jim J. & Robinson, Kelly L. & Wang, Verena H. & Sutton, Tracey & Ainsworth, Cameron & Hernandez, Frank, 2024. "Simulating productivity changes of epipelagic, mesopelagic, and bathypelagic taxa using a depth-resolved, end-to-end food web model for the oceanic Gulf of Mexico," Ecological Modelling, Elsevier, vol. 489(C).
  • Handle: RePEc:eee:ecomod:v:489:y:2024:i:c:s0304380024000127
    DOI: 10.1016/j.ecolmodel.2024.110623
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024000127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110623?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:489:y:2024:i:c:s0304380024000127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.