IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v483y2023ics0304380023001710.html
   My bibliography  Save this article

Optimization land use based on multi-scenario simulation of ecosystem service for sustainable landscape planning in a mixed urban - Forest watershed

Author

Listed:
  • Mohammadyari, Fatemeh
  • Tavakoli, Mohsen
  • Zarandian, Ardavan
  • Abdollahi, Sedighe

Abstract

Integrating ecosystem services (ESs) into land development strategies can provide a new perspective in order to make more informed land use (LULC) decisions. In this sense, a specific framework is provided to use ESs in land allocation in Ilam urban watershed, Western Iran. This region is experiencing unsustainable development and destruction of natural ecosystems and as a result, these conditions have affected ecological characteristics, and ESs. Therefore, characterizing the LULC of this watershed and its impact on ESs is significant to comprehensively understanding the influences of human activities on ecosystems. Hence, the simulated annealing-genetic hybrid algorithm was assessed to optimize LULC using Six types of ESs; including, food provisioning (FP), water yield (WY), sediment retention (SR), recreation quality (RQ), aesthetic quality (AQ) and habitat quality (HQ). Regarding optimization approach, FP, WY, SR, RQ, AQ, HQ and land integration (LI) scenarios were designed based on LULC types and ESs. Considering the land allocation, the results indicated that most changes are related to the northwest, southeast, southwest and middle parts of the region. Moreover, an increasing trend was observed regarding dense forest and low-dense forest, according to the following scenarios: FP, RQ, LI, AQ, WY, SR and HQ. In contrast, a decreasing trend was obtained for cropland in the same order of scenarios. Additionally, the highest areas of garden, grassland, park, river, urban land, and road classes were observed in scenarios HQ, LI, SR, WY and FP, respectively. The results also revealed that the SDR scenario can be regarded as the best one having the lowest LULC fragmentation. Our study indicated that using ESs to optimize LULC allocation is a useful and an important strategy due to the fact that one can consider both the function and the structure of ecosystems in LULC planning and management decisions. Thus, the results of this research can help land managers in order to develop LULC, based on ESs and ecological conditions, which would finally lead to maintain the ESs and achieve sustainable development.

Suggested Citation

  • Mohammadyari, Fatemeh & Tavakoli, Mohsen & Zarandian, Ardavan & Abdollahi, Sedighe, 2023. "Optimization land use based on multi-scenario simulation of ecosystem service for sustainable landscape planning in a mixed urban - Forest watershed," Ecological Modelling, Elsevier, vol. 483(C).
  • Handle: RePEc:eee:ecomod:v:483:y:2023:i:c:s0304380023001710
    DOI: 10.1016/j.ecolmodel.2023.110440
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023001710
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fatemeh Mohammadyari & Ardavan Zarandian & Mir Mehrdad Mirsanjari & Jurate Suziedelyte Visockiene & Egle Tumeliene, 2023. "Modelling Impact of Urban Expansion on Ecosystem Services: A Scenario-Based Approach in a Mixed Natural/Urbanised Landscape," Land, MDPI, vol. 12(2), pages 1-24, January.
    2. Levrel, Harold & Cabral, Pedro & Feger, Clément & Chambolle, Mélodie & Basque, Damien, 2017. "How to overcome the implementation gap in ecosystem services? A user-friendly and inclusive tool for improved urban management," Land Use Policy, Elsevier, vol. 68(C), pages 574-584.
    3. Karimi, Azadeh & Yazdandad, Hossein & Fagerholm, Nora, 2020. "Evaluating social perceptions of ecosystem services, biodiversity, and land management: Trade-offs, synergies and implications for landscape planning and management," Ecosystem Services, Elsevier, vol. 45(C).
    4. Kun Wang & Xiao Ouyang & Qingyun He & Xiang Zhu, 2022. "Impact of Urban Land Expansion Efficiency on Ecosystem Services: A Case Study of the Three Major Urban Agglomerations along the Yangtze River Economic Belt," Land, MDPI, vol. 11(9), pages 1-20, September.
    5. Zhang, Yan & Chang, Xia & Liu, Yanfang & Lu, Yanchi & Wang, Yiheng & Liu, Yaolin, 2021. "Urban expansion simulation under constraint of multiple ecosystem services (MESs) based on cellular automata (CA)-Markov model: Scenario analysis and policy implications," Land Use Policy, Elsevier, vol. 108(C).
    6. Kusi, Kwadwo Kyenkyehene & Khattabi, Abdellatif & Mhammdi, Nadia & Lahssini, Said, 2020. "Prospective evaluation of the impact of land use change on ecosystem services in the Ourika watershed, Morocco," Land Use Policy, Elsevier, vol. 97(C).
    7. Brunet, Lucas & Tuomisaari, Johanna & Lavorel, Sandra & Crouzat, Emilie & Bierry, Adeline & Peltola, Taru & Arpin, Isabelle, 2018. "Actionable knowledge for land use planning: Making ecosystem services operational," Land Use Policy, Elsevier, vol. 72(C), pages 27-34.
    8. Jarisch, Isabelle & Bödeker, Kai & Bingham, Logan Robert & Friedrich, Stefan & Kindu, Mengistie & Knoke, Thomas, 2022. "The influence of discounting ecosystem services in robust multi-objective optimization – An application to a forestry-avocado land-use portfolio," Forest Policy and Economics, Elsevier, vol. 141(C).
    9. González-García, Alberto & Palomo, Ignacio & González, José A. & López, César A. & Montes, Carlos, 2020. "Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning," Land Use Policy, Elsevier, vol. 94(C).
    10. Vallet, Améline & Locatelli, Bruno & Levrel, Harold & Wunder, Sven & Seppelt, Ralf & Scholes, Robert J. & Oszwald, Johan, 2018. "Relationships Between Ecosystem Services: Comparing Methods for Assessing Tradeoffs and Synergies," Ecological Economics, Elsevier, vol. 150(C), pages 96-106.
    11. Elliot, Thomas & Bertrand, Alexandre & Babí Almenar, Javier & Petucco, Claudio & Proença, Vânia & Rugani, Benedetto, 2019. "Spatial optimisation of urban ecosystem services through integrated participatory and multi-objective integer linear programming," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatemeh Mohammadyari & Ardavan Zarandian & Mir Mehrdad Mirsanjari & Jurate Suziedelyte Visockiene & Egle Tumeliene, 2023. "Modelling Impact of Urban Expansion on Ecosystem Services: A Scenario-Based Approach in a Mixed Natural/Urbanised Landscape," Land, MDPI, vol. 12(2), pages 1-24, January.
    2. Yue Wang & Qi Fu & Tinghui Wang & Mengfan Gao & Jinhua Chen, 2022. "Multiscale Characteristics and Drivers of the Bundles of Ecosystem Service Budgets in the Su-Xi-Chang Region, China," IJERPH, MDPI, vol. 19(19), pages 1-26, October.
    3. Wen Zhou & Yantao Xi & Liang Zhai & Cheng Li & Jingyang Li & Wei Hou, 2023. "Zoning for Spatial Conservation and Restoration Based on Ecosystem Services in Highly Urbanized Region: A Case Study in Beijing-Tianjin-Hebei, China," Land, MDPI, vol. 12(4), pages 1-15, March.
    4. Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    5. Remme, Roy P. & Meacham, Megan & Pellowe, Kara E. & Andersson, Erik & Guerry, Anne D. & Janke, Benjamin & Liu, Lingling & Lonsdorf, Eric & Li, Meng & Mao, Yuanyuan & Nootenboom, Christopher & Wu, Tong, 2024. "Aligning nature-based solutions with ecosystem services in the urban century," Ecosystem Services, Elsevier, vol. 66(C).
    6. Barbara Langlois & Vincent Martinet, 2023. "Defining cost-effective ways to improve ecosystem services provision in agroecosystems," Review of Agricultural, Food and Environmental Studies, Springer, vol. 104(2), pages 123-165, June.
    7. Van Oijstaeijen, Wito & Van Passel, Steven & Back, Phil & Cools, Jan, 2022. "The politics of green infrastructure: A discrete choice experiment with Flemish local decision-makers," Ecological Economics, Elsevier, vol. 199(C).
    8. Shuting Bai & Jiuchun Yang & Yubo Zhang & Fengqin Yan & Lingxue Yu & Shuwen Zhang, 2022. "Evaluating Ecosystem Services and Trade-Offs Based on Land-Use Simulation: A Case Study in the Farming–Pastoral Ecotone of Northern China," Land, MDPI, vol. 11(7), pages 1-17, July.
    9. González-García, Alberto & Palomo, Ignacio & González, José A. & López, César A. & Montes, Carlos, 2020. "Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning," Land Use Policy, Elsevier, vol. 94(C).
    10. Moreno-Llorca, R. & Vaz, A.S. & Herrero, J. & Millares, A. & Bonet-García, F.J. & Alcaraz-Segura, D., 2020. "Multi-scale evolution of ecosystem services’ supply in Sierra Nevada (Spain): An assessment over the last half-century," Ecosystem Services, Elsevier, vol. 46(C).
    11. Tariq Aziz & Alain-Désiré Nimubona & Philippe Van Cappellen, 2023. "Comparative Valuation of Three Ecosystem Services in a Canadian Watershed Using Global, Regional, and Local Unit Values," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    12. Ruiqi Zhang & Chunguang Hu & Yucheng Sun, 2024. "Decoding the Characteristics of Ecosystem Services and the Scale Effect in the Middle Reaches of the Yangtze River Urban Agglomeration: Insights for Planning and Management," Sustainability, MDPI, vol. 16(18), pages 1-26, September.
    13. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    14. Shuhua Liang & Fan Yang & Jingyi Zhang & Suwen Xiong & Zhenni Xu, 2024. "Assessment and Management Zoning of Ecosystem Service Trade-Off/Synergy Based on the Social–Ecological Balance: A Case of the Chang-Zhu-Tan Metropolitan Area," Land, MDPI, vol. 13(2), pages 1-25, January.
    15. Laure Thierry de Ville d'Avray & Dominique Ami & Anne Chenuil & Romain David & Jean-Pierre Feral, 2017. "Application of the Ecosystem Service Concept to a Local-Scale: The Cases of Coralligenous Habitats in the North-Western Mediterranean Sea," Working Papers halshs-01624589, HAL.
    16. Jones, Sarah K. & Boundaogo, Mansour & DeClerck, Fabrice A. & Estrada-Carmona, Natalia & Mirumachi, Naho & Mulligan, Mark, 2019. "Insights into the importance of ecosystem services to human well-being in reservoir landscapes," Ecosystem Services, Elsevier, vol. 39(C).
    17. Laterra, Pedro & Weyland, Federico & Auer, Alejandra & Barral, Paula & González, Aira & Mastrángelo, Matías & Rositano, Florencia & Sirimarco, Ximena, 2023. "MARCHI: A serious game for participatory governance of ecosystem services in multiple-use protected areas," Ecosystem Services, Elsevier, vol. 63(C).
    18. Cattaneo, Andrea & Adukia, Anjali & Brown, David L. & Christiaensen, Luc & Evans, David K. & Haakenstad, Annie & McMenomy, Theresa & Partridge, Mark & Vaz, Sara & Weiss, Daniel J., 2022. "Economic and social development along the urban–rural continuum: New opportunities to inform policy," World Development, Elsevier, vol. 157(C).
    19. Mengxue Liu & Xiaobin Dong & Xuechao Wang & Bingyu Zhao & Hejie Wei & Weiguo Fan & Chenyang Zhang, 2022. "The Trade-Offs/Synergies and Their Spatial-Temporal Characteristics between Ecosystem Services and Human Well-Being Linked to Land-Use Change in the Capital Region of China," Land, MDPI, vol. 11(5), pages 1-22, May.
    20. Giedrius Dabašinskas & Gintarė Sujetovienė, 2024. "Spatial and Temporal Changes in Supply and Demand for Ecosystem Services in Response to Urbanization: A Case Study in Vilnius, Lithuania," Land, MDPI, vol. 13(4), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:483:y:2023:i:c:s0304380023001710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.