IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v463y2022ics0304380021003598.html
   My bibliography  Save this article

Algal bloom prediction influenced by the Water Transfer Project in the Middle-lower Hanjiang River

Author

Listed:
  • Xia, Rui
  • Zou, Lei
  • Zhang, Yuan
  • Zhang, Yongyong
  • Chen, Yan
  • Liu, Chengjian
  • Yang, Zhongwen
  • Ma, Shuqin

Abstract

River algal blooms have become a complex and challenging environmental issue due to the impacts of human activities and inter-basin water transfer project. As the water source of the Middle Route Project (MRP) of South-to-North Water Diversion Project (SNWDP), the Hanjiang River (HR) has experienced frequent algal blooms and this caused potential risk to the drinking water safety of residents along the river. Here, an integrated river algal bloom model was developed to simulate river algal blooms and analyze the effects of MRP of SNWDP on algal bloom occurrence patterns in the middle-lower HR. The integrated river algal bloom model considered multiple physical-chemical-biological processes, which include the hydrological cycle of basin, the interactive mechanisms of river hydrodynamics and the improved algal dynamics process by adding a hydrology factor. The results show that the relative error between simulated and observed algae density at the Qin Duankou (QDK) and Zongguan (ZG) sections are 17.1% and 18.5% during the calibration period and are 18.3% and 19.7% during the validation period, indicating that the proposed integrated algal bloom model met the basic requirements for simulating river algal blooms. Additionally, our analysis indicates that the occurrence of algal bloom events in the middle-lower HR will increase by about two-fold under the water transfer scenario of 9.5 billion m3 year–1 and 2.5-fold under the scenario of 13 billion m3 year–1 at the QDK section. This study potentially provides scientific tool for local governments to carry out optimal scheduling of water conservancy projects for the protection of water ecological environment.

Suggested Citation

  • Xia, Rui & Zou, Lei & Zhang, Yuan & Zhang, Yongyong & Chen, Yan & Liu, Chengjian & Yang, Zhongwen & Ma, Shuqin, 2022. "Algal bloom prediction influenced by the Water Transfer Project in the Middle-lower Hanjiang River," Ecological Modelling, Elsevier, vol. 463(C).
  • Handle: RePEc:eee:ecomod:v:463:y:2022:i:c:s0304380021003598
    DOI: 10.1016/j.ecolmodel.2021.109814
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021003598
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Morales-Marín, L.A. & Rokaya, P. & Sanyal, P.R. & Sereda, J. & Lindenschmidt, K.E., 2019. "Changes in streamflow and water temperature affect fish habitat in the Athabasca River basin in the context of climate change," Ecological Modelling, Elsevier, vol. 407(C), pages 1-1.
    2. Di Long & Wenting Yang & Bridget R. Scanlon & Jianshi Zhao & Dagen Liu & Peter Burek & Yun Pan & Liangzhi You & Yoshihide Wada, 2020. "South-to-North Water Diversion stabilizing Beijing’s groundwater levels," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Kim, Hyo Gyeom & Hong, Sungwon & Jeong, Kwang-Seuk & Kim, Dong-Kyun & Joo, Gea-Jae, 2019. "Determination of sensitive variables regardless of hydrological alteration in artificial neural network model of chlorophyll a: Case study of Nakdong River," Ecological Modelling, Elsevier, vol. 398(C), pages 67-76.
    4. Shen, Jian & Qin, Qubin & Wang, Ya & Sisson, Mac, 2019. "A data-driven modeling approach for simulating algal blooms in the tidal freshwater of James River in response to riverine nutrient loading," Ecological Modelling, Elsevier, vol. 398(C), pages 44-54.
    5. Rui Xia & Yuan Zhang & Andrea Critto & Jieyun Wu & Juntao Fan & Zhirong Zheng & Yizhang Zhang, 2016. "The Potential Impacts of Climate Change Factors on Freshwater Eutrophication: Implications for Research and Countermeasures of Water Management in China," Sustainability, MDPI, vol. 8(3), pages 1-17, March.
    6. Wenquan Gu & Dongguo Shao & Yufang Jiang, 2012. "Risk Evaluation of Water Shortage in Source Area of Middle Route Project for South-to-North Water Transfer in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3479-3493, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhe Cheng & Yuntong Zhao & Tao Song & Le Cheng & Wenbin Wang, 2023. "White Elephant or Golden Goose? An Assessment of Middle Route of the South-to-North Water Diversion Project from the Perspective of Regional Water Use Efficiency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 819-834, January.
    2. Jing Tian & Dedi Liu & Shenglian Guo & Zhengke Pan & Xingjun Hong, 2019. "Impacts of Inter-Basin Water Transfer Projects on Optimal Water Resources Allocation in the Hanjiang River Basin, China," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    3. Qian Zhang & Xiujuan Liang & Zhang Fang & Tao Jiang & Yubo Wang & Lei Wang, 2016. "Urban water resources allocation and shortage risk mapping with support vector machine method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1209-1228, March.
    4. Shawei He & Keith Hipel & D. Kilgour, 2014. "Water Diversion Conflicts in China: A Hierarchical Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1823-1837, May.
    5. Qian Zhang & Xiujuan Liang & Zhang Fang & Tao Jiang & Yubo Wang & Lei Wang, 2016. "Urban water resources allocation and shortage risk mapping with support vector machine method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1209-1228, March.
    6. Claudio Arena & Marcella Cannarozzo & Mario Mazzola, 2014. "Screening Investments to Reduce the Risk of Hydrologic Failures in the Headwork System Supplying Apulia (Italy) – Role of Economic Evaluation and Operation Hydrology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1251-1275, March.
    7. Bin Liu & Huajian Fang & Xiaosheng Qin & Feilian Zhang & Jingjing Li, 2023. "An integrated multi‐criteria analysis framework of built reservoir with dam‐heightening‐based decision: China's largest water transfer programs for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 540-554, February.
    8. Wenxiang, Ding & Caiyun, Zhang & Shaoping, Shang & Xueding, Li, 2022. "Optimization of deep learning model for coastal chlorophyll a dynamic forecast," Ecological Modelling, Elsevier, vol. 467(C).
    9. Liang Zhang & Sisi Li & Hugo A. Loáiciga & Yanhua Zhuang & Yun Du, 2015. "Opportunities and challenges of interbasin water transfers: a literature review with bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 279-294, October.
    10. Jin‐Won Yu & Ju‐Song Kim & Yun‐Chol Jong & Xia Li & Gwang‐Il Ryang, 2022. "Forecasting chlorophyll‐a concentration using empirical wavelet transform and support vector regression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1691-1700, December.
    11. Hanfang Xu & Zhen Yao, "undated". "The impact of the south-to-north water diversion project on the usage of water-saving irrigation machinery," Review of Socio - Economic Perspectives 202216, Reviewsep.
    12. Mustafa Hakki Aydogdu & Kasim Yenigün, 2016. "Farmers’ Risk Perception towards Climate Change: A Case of the GAP-Şanlıurfa Region, Turkey," Sustainability, MDPI, vol. 8(8), pages 1-12, August.
    13. Tejasvi Chauhan & Anjana Devanand & Mathew Koll Roxy & Karumuri Ashok & Subimal Ghosh, 2023. "River interlinking alters land-atmosphere feedback and changes the Indian summer monsoon," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Aihong Fu & Yi Wang & Zhaoxia Ye, 2020. "Quantitative Determination of Some Parameters in the Tennant Method and Its Application to Sustainability: A Case Study of the Yarkand River, Xinjiang, China," Sustainability, MDPI, vol. 12(9), pages 1-12, May.
    15. Ruoqi Ma & Mingquan Yan & Peng Han & Ting Wang & Bin Li & Shungui Zhou & Tong Zheng & Yandi Hu & Alistair G. L. Borthwick & Chunmiao Zheng & Jinren Ni, 2022. "Deficiency and excess of groundwater iodine and their health associations," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Ziheng Feng & Liying Sun, 2024. "Water Conservation Implications Based on Tempo-Spatial Characteristics of Water Footprint in the Water-Receiving Areas of the South-to-North Water Diversion Project, China," Sustainability, MDPI, vol. 16(3), pages 1-18, February.
    17. Lu, Na & Niu, Jun & Kang, Shaozhong & Singh, Shailesh Kumar & Du, Taisheng, 2021. "A hybrid PCA-SEM-ANN model for the prediction of water use efficiency," Ecological Modelling, Elsevier, vol. 460(C).
    18. Dongguo Shao & Zhuomin Wang & Bei Wang & Weiwei Luo, 2016. "A Water Quality Model with Three Dimensional Variational Data Assimilation for Contaminant Transport," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4501-4512, October.
    19. Li, Mo & Guo, Ping & Singh, Vijay P. & Yang, Gaiqiang, 2016. "An uncertainty-based framework for agricultural water-land resources allocation and risk evaluation," Agricultural Water Management, Elsevier, vol. 177(C), pages 10-23.
    20. Rajesh R. Shrestha & Jennifer C. Pesklevits, 2023. "Reconstructed River Water Temperature Dataset for Western Canada 1980–2018," Data, MDPI, vol. 8(3), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:463:y:2022:i:c:s0304380021003598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.