IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v455y2021ics0304380021002192.html
   My bibliography  Save this article

Bifurcation analysis and global dynamics in a predator–prey system of Leslie type with an increasing functional response

Author

Listed:
  • Shang, Zuchong
  • Qiao, Yuanhua
  • Duan, Lijuan
  • Miao, Jun

Abstract

The dynamical behaviors of a Leslie type predator–prey system are explored when the functional response is increasing for both predator and prey. Qualitative and quantitative analysis methods based on stability theory, bifurcation theory and numerical simulation are adopted. It is showed that the system is dissipative and permanent, and its solutions are bounded. Global stability of the unique positive equilibrium is investigated by constructing Dulac function and applying Poincaré–Bendixson theorem. The bifurcation behaviors are further explored and the number of limit cycles is determined. By calculating the first Lyapunov number and the first two focus values, it is proved that the positive equilibrium is not a center but a weak focus of multiplicity at most two, so the system undergoes Hopf bifurcation and Bautin bifurcation. The normal form of Bautin bifurcation is also obtained by introducing the complex system. Moreover, numerical simulations are run to demonstrate the validity of theoretical results.

Suggested Citation

  • Shang, Zuchong & Qiao, Yuanhua & Duan, Lijuan & Miao, Jun, 2021. "Bifurcation analysis and global dynamics in a predator–prey system of Leslie type with an increasing functional response," Ecological Modelling, Elsevier, vol. 455(C).
  • Handle: RePEc:eee:ecomod:v:455:y:2021:i:c:s0304380021002192
    DOI: 10.1016/j.ecolmodel.2021.109660
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021002192
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Savoca, S. & Grifó, G. & Panarello, G. & Albano, M. & Giacobbe, S. & Capillo, G. & Spanó, N. & Consolo, G., 2020. "Modelling prey-predator interactions in Messina beachrock pools," Ecological Modelling, Elsevier, vol. 434(C).
    2. Lajmiri, Z. & Khoshsiar Ghaziani, R. & Orak, Iman, 2018. "Bifurcation and stability analysis of a ratio-dependent predator-prey model with predator harvesting rate," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 193-200.
    3. Colon, C. & Claessen, D. & Ghil, M., 2015. "Bifurcation analysis of an agent-based model for predator–prey interactions," Ecological Modelling, Elsevier, vol. 317(C), pages 93-106.
    4. Ghosh, Uttam & Pal, Swadesh & Banerjee, Malay, 2021. "Memory effect on Bazykin’s prey-predator model: Stability and bifurcation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    5. Negi, Kuldeep & Gakkhar, Sunita, 2007. "Dynamics in a Beddington–DeAngelis prey–predator system with impulsive harvesting," Ecological Modelling, Elsevier, vol. 206(3), pages 421-430.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juneja, Nishant & Agnihotri, Kulbhushan, 2018. "Conservation of a predator species in SIS prey-predator system using optimal taxation policy," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 86-94.
    2. Majumdar, Prahlad & Mondal, Bapin & Debnath, Surajit & Ghosh, Uttam, 2022. "Controlling of periodicity and chaos in a three dimensional prey predator model introducing the memory effect," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Wu, Xingjie & Huang, Wentao, 2009. "Dynamic analysis of a one-prey multi-predator impulsive system with Ivlev-type functional," Ecological Modelling, Elsevier, vol. 220(6), pages 774-783.
    4. Mortoja, Sk Golam & Panja, Prabir & Paul, Ayan & Bhattacharya, Sabyasachi & Mondal, Shyamal Kumar, 2020. "Is the intermediate predator a key regulator of a tri-trophic food chain model?: An illustration through a new functional response," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    5. Avcı, İbrahim & Hussain, Azhar & Kanwal, Tanzeela, 2023. "Investigating the impact of memory effects on computer virus population dynamics: A fractal–fractional approach with numerical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Yılmaz, Zeynep & Maden, Selahattin & Gökçe, Aytül, 2022. "Dynamics and stability of two predators–one prey mathematical model with fading memory in one predator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 526-539.
    7. Alatas, Husin & Nurhimawan, Salamet & Asmat, Fikri & Hardhienata, Hendradi, 2017. "Dynamics of an agent-based opinion model with complete social connectivity network," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 24-32.
    8. Balcı, Ercan, 2023. "Predation fear and its carry-over effect in a fractional order prey–predator model with prey refuge," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    9. Gökçe, Aytül, 2022. "A dynamic interplay between Allee effect and time delay in a mathematical model with weakening memory," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    10. Li, Xiaodi & Yang, Xueyan & Huang, Tingwen, 2019. "Persistence of delayed cooperative models: Impulsive control method," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 130-146.
    11. Shang, Zuchong & Qiao, Yuanhua & Duan, Lijuan & Miao, Jun, 2021. "Bifurcation analysis in a predator–prey system with an increasing functional response and constant-yield prey harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 976-1002.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:455:y:2021:i:c:s0304380021002192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.