IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v452y2021ics0304380021001514.html
   My bibliography  Save this article

Key factors affecting discharge, soil erosion, nitrogen and phosphorus exports from agricultural polder

Author

Listed:
  • Yan, Renhua
  • Gao, Junfeng

Abstract

Quantifying the relative effect of driving factors on polder hydrological processes and identifying the key factors are prerequisites to adopting effective measures for alleviating flooding, soil loss, and eutrophication. Based on the output results of calibrated Polder Hydrology and Nitrogen modeling System (PHNS) and Polder Hydrology and Phosphorus modeling System (PHPS), the boosted regression tree (BRT) model screened key influential factors and identified the corresponding threshold point values in a typical Chinese agricultural polder. Temporal changes in discharge and soil erosion were most sensitive to weather factors, while those of nitrogen and phosphorus exports were mainly influenced by human management actions. Precipitation was the largest contributor to the temporal variation of discharge (51.5%), soil erosion (69.4%). Vegetation cover and management factor of dryland C2 (34.5%) defined as the ratio of sediment loss from cropland to the corresponding loss from clean-tilled and continuous fallow, and phosphorus fertilization application to paddy field (30.7%) were the two determinants of phosphorus export, whilst surface water level to stop pump drainage (48.2%) had the largest contributions to nitrogen export. Precipitation from 0 to 50 mm/d contributed to a significant increase in discharge, soil erosion and nitrogen and phosphorus exports. Vegetation cover and management factor of paddy field C1 under 0.28 contributed to an elevated risk of nitrogen export, and C2 below 0.34 facilitated soil loss and phosphorus export.

Suggested Citation

  • Yan, Renhua & Gao, Junfeng, 2021. "Key factors affecting discharge, soil erosion, nitrogen and phosphorus exports from agricultural polder," Ecological Modelling, Elsevier, vol. 452(C).
  • Handle: RePEc:eee:ecomod:v:452:y:2021:i:c:s0304380021001514
    DOI: 10.1016/j.ecolmodel.2021.109586
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021001514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, G.J. & Hörmann, G. & Fohrer, N. & Li, H.P. & Gao, J.F. & Tian, K., 2011. "Development and application of a nitrogen simulation model in a data scarce catchment in South China," Agricultural Water Management, Elsevier, vol. 98(4), pages 619-631, February.
    2. Hesse, Cornelia & Krysanova, Valentina & Päzolt, Jens & Hattermann, Fred F., 2008. "Eco-hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality," Ecological Modelling, Elsevier, vol. 218(1), pages 135-148.
    3. Yan, Renhua & Gao, Junfeng & Huang, Jiacong, 2016. "WALRUS-paddy model for simulating the hydrological processes of lowland polders with paddy fields and pumping stations," Agricultural Water Management, Elsevier, vol. 169(C), pages 148-161.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Y. Yang & L. Wang, 2010. "A Review of Modelling Tools for Implementation of the EU Water Framework Directive in Handling Diffuse Water Pollution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1819-1843, July.
    2. Panagopoulos, Y. & Makropoulos, C. & Baltas, E. & Mimikou, M., 2011. "SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations," Ecological Modelling, Elsevier, vol. 222(19), pages 3500-3512.
    3. Ferrant, Sylvain & Durand, Patrick & Justes, Eric & Probst, Jean-Luc & Sanchez-Perez, José-Miguel, 2013. "Simulating the long term impact of nitrate mitigation scenarios in a pilot study basin," Agricultural Water Management, Elsevier, vol. 124(C), pages 85-96.
    4. Li, Y.P. & Huang, G.H. & Zhang, N. & Nie, S.L., 2011. "An inexact-stochastic with recourse model for developing regional economic-ecological sustainability under uncertainty," Ecological Modelling, Elsevier, vol. 222(2), pages 370-379.
    5. Liu, Lianhua & Ouyang, Wei & Wang, Yidi & Lian, Zhongmin & Pan, Junting & Liu, Hongbin & Chen, Jingrui & Niu, Shiwei, 2023. "Paddy water managements for diffuse nitrogen and phosphorus pollution control in China: A comprehensive review and emerging prospects," Agricultural Water Management, Elsevier, vol. 277(C).
    6. Hesse, Cornelia & Krysanova, Valentina & Vetter, Tobias & Reinhardt, Julia, 2013. "Comparison of several approaches representing terrestrial and in-stream nutrient retention and decomposition in watershed modelling," Ecological Modelling, Elsevier, vol. 269(C), pages 70-85.
    7. Huang, Shaochun & Hesse, Cornelia & Krysanova, Valentina & Hattermann, Fred, 2009. "From meso- to macro-scale dynamic water quality modelling for the assessment of land use change scenarios," Ecological Modelling, Elsevier, vol. 220(19), pages 2543-2558.
    8. Zhaofu Li & Chuan Luo & Kaixia Jiang & Rongrong Wan & Hengpeng Li, 2017. "Comprehensive Performance Evaluation for Hydrological and Nutrients Simulation Using the Hydrological Simulation Program–Fortran in a Mesoscale Monsoon Watershed, China," IJERPH, MDPI, vol. 14(12), pages 1-18, December.
    9. Lu, Jun & Gong, Dongqin & Shen, Yena & Liu, Mei & Chen, Dingjiang, 2013. "An inversed Bayesian modeling approach for estimating nitrogen export coefficients and uncertainty assessment in an agricultural watershed in eastern China," Agricultural Water Management, Elsevier, vol. 116(C), pages 79-88.
    10. Muhammad Waseem & Jannik Schilling & Frauke Kachholz & Jens Tränckner, 2020. "Improved Representation of Flow and Water Quality in a North-Eastern German Lowland Catchment by Combining Low-Frequency Monitored Data with Hydrological Modelling," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    11. Lenz-Wiedemann, V.I.S. & Klar, C.W. & Schneider, K., 2010. "Development and test of a crop growth model for application within a Global Change decision support system," Ecological Modelling, Elsevier, vol. 221(2), pages 314-329.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:452:y:2021:i:c:s0304380021001514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.