IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v415y2020ics0304380019303680.html
   My bibliography  Save this article

Evaluating the influences of integrated culture on pelagic ecosystem by a numerical approach: A case study of Sungo Bay, China

Author

Listed:
  • Sun, Ke
  • Zhang, Jihong
  • Lin, Fan
  • Ren, Jeffrey S.
  • Zhao, Yunxia
  • Wu, Wenguang
  • Liu, Yi

Abstract

With increasing concern over the environment in mariculture, the integrated culture has received extensive attention in recent years. For management of aquaculture farms, a biophysical model was developed to quantify the potential influence of bivalves-seaweed integrated culture on pelagic ecosystem. We developed NEMURO.CULTURE model by coupling the cultivated species (kelp Laminaria japonica, oyster Crassostrea gigas, scallop Chlamys farreri) and phosphorus-related variables with NEMURO (North Pacific Ecosystem Model for Understanding Regional Oceanography). The entire culture area of Sungo Bay was divided into five boxes according to the culture layout (kelp monoculture areas (K-area), co-culture areas (K&O-area), scallop monoculture areas (S-area), oyster monoculture areas (O-area), fish culture areas (F-area), and no-culture areas (Boundary)). The application of the model to the integrated culture system in Sungo Bay has shown promising results as the simulations reasonably agreed with the observations. The model was then used for scenario simulations to analyse the impact of mariculture. The simulation results showed that: 1) the concentration of phytoplankton and nutrients was largely constrained by cultivated kelps during the late stage of kelp culture period, while the influence of cultivated bivalves was relatively small; 2) the influence of cultivated kelps and bivalves could be transported to neighbor areas and weakened in the K-area, while the influence of cultivated fishes was confined near F-area; 3) the integrated culture of shellfish and seaweed in Sungo Bay would reduce the risk of eutrophication in spring; 4) the addition of phosphorus-related variables enabled the model to depict more details and phosphorus could be the limiting factor for phytoplankton growth at some time in Sungo Bay. This modelling work provides a quantitative tool for helping planning and management of coastal aquaculture.

Suggested Citation

  • Sun, Ke & Zhang, Jihong & Lin, Fan & Ren, Jeffrey S. & Zhao, Yunxia & Wu, Wenguang & Liu, Yi, 2020. "Evaluating the influences of integrated culture on pelagic ecosystem by a numerical approach: A case study of Sungo Bay, China," Ecological Modelling, Elsevier, vol. 415(C).
  • Handle: RePEc:eee:ecomod:v:415:y:2020:i:c:s0304380019303680
    DOI: 10.1016/j.ecolmodel.2019.108860
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019303680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.108860?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Jeffrey S. & Stenton-Dozey, Jeanie & Plew, David R. & Fang, Jianguang & Gall, Mark, 2012. "An ecosystem model for optimising production in integrated multitrophic aquaculture systems," Ecological Modelling, Elsevier, vol. 246(C), pages 34-46.
    2. Aita, Maki Noguchi & Yamanaka, Yasuhiro & Kishi, Michio J., 2007. "Interdecadal variation of the lower trophic ecosystem in the northern Pacific between 1948 and 2002, in a 3-D implementation of the NEMURO model," Ecological Modelling, Elsevier, vol. 202(1), pages 81-94.
    3. Zuenko, Yury I., 2007. "Application of a lower trophic level model to a coastal sea ecosystem," Ecological Modelling, Elsevier, vol. 202(1), pages 132-143.
    4. Hashioka, Taketo & Yamanaka, Yasuhiro, 2007. "Ecosystem change in the western North Pacific associated with global warming using 3D-NEMURO," Ecological Modelling, Elsevier, vol. 202(1), pages 95-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Yu & Li, Zenghui & Sun, Changyang & Feng, Zhiwei & Li, Jingyao & Wei, Danyi & Wang, Bin & Jiang, Shang & Chen, Keliang & Sun, Xiang, 2023. "Using the roughness height and manning number in hydrodynamic model to estimate the impact of intensive oyster aquaculture by floating & fixed rafts on water exchange with an application in Qinzhou Ba," Ecological Modelling, Elsevier, vol. 476(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sailley, S.F. & Vogt, M. & Doney, S.C. & Aita, M.N. & Bopp, L. & Buitenhuis, E.T. & Hashioka, T. & Lima, I. & Le Quéré, C. & Yamanaka, Y., 2013. "Comparing food web structures and dynamics across a suite of global marine ecosystem models," Ecological Modelling, Elsevier, vol. 261, pages 43-57.
    2. Werner, Francisco E. & Ito, Shin-Ichi & Megrey, Bernard A. & Kishi, Michio J., 2007. "Synthesis of the NEMURO model studies and future directions of marine ecosystem modeling," Ecological Modelling, Elsevier, vol. 202(1), pages 211-223.
    3. Xing, Lei & Zhang, Chongliang & Chen, Yong & Shin, Yunne-Jai & Verley, Philippe & Yu, Haiqing & Ren, Yiping, 2017. "An individual-based model for simulating the ecosystem dynamics of Jiaozhou Bay, China," Ecological Modelling, Elsevier, vol. 360(C), pages 120-131.
    4. Yoshie, Naoki & Yamanaka, Yasuhiro & Rose, Kenneth A. & Eslinger, David L. & Ware, Daniel M. & Kishi, Michio J., 2007. "Parameter sensitivity study of the NEMURO lower trophic level marine ecosystem model," Ecological Modelling, Elsevier, vol. 202(1), pages 26-37.
    5. Eleni Avramidou & Ioanna Karamichali & Ioannis Tsiripidis & Eleni M. Abraham, 2024. "Diversity Levels under Different Grazing Intensities in Semi-Wet Grasslands," Land, MDPI, vol. 13(4), pages 1-26, April.
    6. Kearney, Kelly A. & Stock, Charles & Aydin, Kerim & Sarmiento, Jorge L., 2012. "Coupling planktonic ecosystem and fisheries food web models for a pelagic ecosystem: Description and validation for the subarctic Pacific," Ecological Modelling, Elsevier, vol. 237, pages 43-62.
    7. Zhao, Yunxia & Zhang, Jihong & Lin, Fan & Ren, Jeffrey S. & Sun, Ke & Liu, Yi & Wu, Wenguang & Wang, Wei, 2019. "An ecosystem model for estimating shellfish production carrying capacity in bottom culture systems," Ecological Modelling, Elsevier, vol. 393(C), pages 1-11.
    8. Rose, Kenneth A. & Werner, Francisco E. & Megrey, Bernard A. & Aita, Maki Noguchi & Yamanaka, Yasuhiro & Hay, Douglas E. & Schweigert, Jake F. & Foster, Matthew Birch, 2007. "Simulated herring growth responses in the Northeastern Pacific to historic temperature and zooplankton conditions generated by the 3-dimensional NEMURO nutrient–phytoplankton–zooplankton model," Ecological Modelling, Elsevier, vol. 202(1), pages 184-195.
    9. Venolia, Celeste T. & Lavaud, Romain & Green-Gavrielidis, Lindsay A. & Thornber, Carol & Humphries, Austin T., 2020. "Modeling the Growth of Sugar Kelp (Saccharina latissima) in Aquaculture Systems using Dynamic Energy Budget Theory," Ecological Modelling, Elsevier, vol. 430(C).
    10. Lavaud, Romain & Filgueira, Ramón & Nadeau, André & Steeves, Laura & Guyondet, Thomas, 2020. "A Dynamic Energy Budget model for the macroalga Ulva lactuca," Ecological Modelling, Elsevier, vol. 418(C).
    11. Hashioka, Taketo & Yamanaka, Yasuhiro, 2007. "Ecosystem change in the western North Pacific associated with global warming using 3D-NEMURO," Ecological Modelling, Elsevier, vol. 202(1), pages 95-104.
    12. Dong Tian & Min Zhang & Xuejian Wei & Jing Wang & Weisong Mu & Jianying Feng, 2018. "GIS-Based Energy Consumption and Spatial Variation of Protected Grape Cultivation in China," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
    13. Ren, Jeffrey S. & Jin, Xianshi & Yang, Tao & Kooijman, Sebastiaan A.L.M. & Shan, Xiujuan, 2020. "A dynamic energy budget model for small yellow croaker Larimichthys polyactis: Parameterisation and application in its main geographic distribution waters," Ecological Modelling, Elsevier, vol. 427(C).
    14. Fan, L.I.N. & Meirong, D.U. & Hui, L.I.U. & Jianguang, F.A.N.G. & Lars, ASPLIN & Zengjie, J.I.A.N.G., 2020. "A physical-biological coupled ecosystem model for integrated aquaculture of bivalve and seaweed in sanggou bay," Ecological Modelling, Elsevier, vol. 431(C).
    15. Yang, Tao & Ren, Jeffrey S. & Kooijman, Sebastiaan A.L.M. & Shan, Xiujuan & Gorfine, Harry, 2020. "A dynamic energy budget model of Fenneropenaeus chinensis with applications for aquaculture and stock enhancement," Ecological Modelling, Elsevier, vol. 431(C).
    16. Xing, Lei & Chen, Yong & Zhang, Chongliang & Li, Bai & Tanaka, Kisei R. & Boenish, Robert & Ren, Yiping, 2020. "Evaluating impacts of imprecise parameters on the performance of an ecosystem model OSMOSE-JZB," Ecological Modelling, Elsevier, vol. 419(C).
    17. Megrey, Bernard A. & Rose, Kenneth A. & Ito, Shin-ichi & Hay, Douglas E. & Werner, Francisco E. & Yamanaka, Yasuhiro & Aita, Maki Noguchi, 2007. "North Pacific basin-scale differences in lower and higher trophic level marine ecosystem responses to climate impacts using a nutrient-phytoplankton–zooplankton model coupled to a fish bioenergetics m," Ecological Modelling, Elsevier, vol. 202(1), pages 196-210.
    18. Masuda, Yoshio & Yamanaka, Yasuhiro & Hirata, Takafumi & Nakano, Hideyuki, 2017. "Competition and community assemblage dynamics within a phytoplankton functional group: Simulation using an eddy-resolving model to disentangle deterministic and random effects," Ecological Modelling, Elsevier, vol. 343(C), pages 1-14.
    19. Galasso, Helena Lopes & Lefebvre, Sébastien & Aliaume, Catherine & Sadoul, Bastien & Callier, Myriam D., 2020. "Using the Dynamic Energy Budget theory to evaluate the bioremediation potential of the polychaete Hediste diversicolor in an integrated multi-trophic aquaculture system," Ecological Modelling, Elsevier, vol. 437(C).
    20. Guillaumot, Charlène & Saucède, Thomas & Morley, Simon A. & Augustine, Starrlight & Danis, Bruno & Kooijman, Sebastiaan, 2020. "Can DEB models infer metabolic differences between intertidal and subtidal morphotypes of the Antarctic limpet Nacella concinna (Strebel, 1908)?," Ecological Modelling, Elsevier, vol. 430(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:415:y:2020:i:c:s0304380019303680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.