IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v409y2019ic6.html
   My bibliography  Save this article

A novel modelling approach to describe an insect life cycle vis-à-vis plant protection: description and application in the case study of Tuta absoluta

Author

Listed:
  • Rossini, Luca
  • Severini, Maurizio
  • Contarini, Mario
  • Speranza, Stefano

Abstract

The Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), commonly known as the tomato leaf miner, is arousing interest throughout the scientific community because of its aggressiveness against Lycopersicon spp., Capsicum spp. and Solanum spp. Significant economic losses surrounding the tomato plant have been reported in different parts of the world and these are, above all, the result of the immense capacity of the tomato leaf miner to reproduce within its life cycle, which spans an average of 30 days. The aim of this paper is the demonstration of a novel mathematical model capable to describe ectotherms life cycle, and to test it in the case of T. absoluta. A mathematical description can help farmers and stakeholders to forecast when the stages at which the insect is most susceptible to control strategies, will be reached. This will allow timely planning for the performance of the most efficient and environmentally friendly control strategy. The model is based on a first order partial differential equation, which can describe the density of population in function of the time t, and physiological age x, and which is driven by the environmental parameters and fundamental conditions for poikilothermic organisms. The result is a simulation of the life cycle, which depicts that the development of the insect is largely due to daily average temperature. This study is strengthened by double validation with semi-field data collected in an experimental greenhouse.

Suggested Citation

  • Rossini, Luca & Severini, Maurizio & Contarini, Mario & Speranza, Stefano, 2019. "A novel modelling approach to describe an insect life cycle vis-à-vis plant protection: description and application in the case study of Tuta absoluta," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
  • Handle: RePEc:eee:ecomod:v:409:y:2019:i:c:6
    DOI: 10.1016/j.ecolmodel.2019.108778
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019302868
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.108778?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gilioli, Gianni & Pasquali, Sara & Marchesini, Enrico, 2016. "A modelling framework for pest population dynamics and management: An application to the grape berry moth," Ecological Modelling, Elsevier, vol. 320(C), pages 348-357.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kolpas, Allison & Funk, David H. & Jackson, John K. & Sweeney, Bernard W., 2020. "Phenological modeling of the parthenogenetic mayfly Neocloeon triangulifer (Ephemeroptera: Baetidae) in White Clay Creek," Ecological Modelling, Elsevier, vol. 416(C).
    2. Rossini, Luca & Contarini, Mario & Severini, Maurizio & Speranza, Stefano, 2020. "Reformulation of the Distributed Delay Model to describe insect pest populations using count variables," Ecological Modelling, Elsevier, vol. 436(C).
    3. Rossini, Luca & Bono Rosselló, Nicolás & Speranza, Stefano & Garone, Emanuele, 2021. "A general ODE-based model to describe the physiological age structure of ectotherms: Description and application to Drosophila suzukii," Ecological Modelling, Elsevier, vol. 456(C).
    4. Brunetti, Matteo & Capasso, Vincenzo & Montagna, Matteo & Venturino, Ezio, 2020. "A mathematical model for Xylella fastidiosa epidemics in the Mediterranean regions. Promoting good agronomic practices for their effective control," Ecological Modelling, Elsevier, vol. 432(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pasquali, Sara, 2021. "A stage structured demographic model with “no-regression” growth: The case of constant development rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Pasquali, Sara & Trivellato, Barbara, 2023. "A stage structured demographic model with “no-regression” growth: The case of temperature-dependent development rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    3. Rossini, Luca & Contarini, Mario & Severini, Maurizio & Speranza, Stefano, 2020. "Reformulation of the Distributed Delay Model to describe insect pest populations using count variables," Ecological Modelling, Elsevier, vol. 436(C).
    4. Neta, Ayana & Gafni, Roni & Elias, Hilit & Bar-Shmuel, Nitsan & Shaltiel-Harpaz, Liora & Morin, Efrat & Morin, Shai, 2021. "Decision support for pest management: Using field data for optimizing temperature-dependent population dynamics models," Ecological Modelling, Elsevier, vol. 440(C).
    5. Klagkou, Evridiki & Gergs, Andre & Baden, Christian U. & Lika, Konstadia, 2024. "Dynamic Energy Budget approach for modeling growth and reproduction of Neotropical stink bugs," Ecological Modelling, Elsevier, vol. 493(C).
    6. Pasquali, S. & Soresina, C. & Marchesini, E., 2022. "Mortality estimate driven by population abundance field data in a stage-structured demographic model. The case of Lobesia botrana," Ecological Modelling, Elsevier, vol. 464(C).
    7. Castex, V. & García de Cortázar-Atauri, I. & Calanca, P. & Beniston, M. & Moreau, J., 2020. "Assembling and testing a generic phenological model to predict Lobesia botrana voltinism for impact studies," Ecological Modelling, Elsevier, vol. 420(C).
    8. Aguirre-Zapata, Estefania & Alvarez, Hernan & Dagatti, Carla Vanina & di Sciascio, Fernando & Amicarelli, Adriana N., 2023. "Parametric interpretability of growth kinetics equations in a process model for the life cycle of Lobesia botrana," Ecological Modelling, Elsevier, vol. 482(C).
    9. Pasquali, S. & Soresina, C. & Gilioli, G., 2019. "The effects of fecundity, mortality and distribution of the initial condition in phenological models," Ecological Modelling, Elsevier, vol. 402(C), pages 45-58.
    10. Rossini, Luca & Bono Rosselló, Nicolás & Speranza, Stefano & Garone, Emanuele, 2021. "A general ODE-based model to describe the physiological age structure of ectotherms: Description and application to Drosophila suzukii," Ecological Modelling, Elsevier, vol. 456(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:409:y:2019:i:c:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.