IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v360y2017icp387-398.html
   My bibliography  Save this article

Modelling tree-grass coexistence in water-limited ecosystems

Author

Listed:
  • Ying, Zhixia
  • Liao, Jinbao
  • Liu, Yongjie
  • Wang, Shichang
  • Lu, Hui
  • Ma, Liang
  • Chen, Dongdong
  • Li, Zhenqing

Abstract

Tree-grass coexistence is commonly observed in arid and semi-arid ecosystems. Many of these ecosystems are undergoing a shift from grassland to tree dominance or the opposite. Therefore, exploring the mechanism of tree-grass coexistence and studying how ecosystems respond to environmental change are critical to understanding such shift. We construct a tree-grass-water model by considering the Walter’s two layer hypothesis, i.e., the grass species only access to the shallow soil water, while the tree can uptake both the shallow and deep soil water. Results show that the tree-grass coexistence region increases with increasing their niche separation. Hence, the vertical niche separation between trees and grass with respect to limiting water resources might be one of mechanisms for tree-grass coexistence. Besides, both tree and grass display positive responses to precipitation, but surprisingly, there exists a catastrophe that the mean vegetation density first rapidly increases, but then quickly decreases as precipitation increases in the tree-grass-water model with infiltration feedback. Most likely, this catastrophe is due primarily to the periodical fluctuation of vegetation density and water caused by its intrinsic infiltration feedback. Overall, our study provides new insights into the dynamics of tree-grass in arid and semi-arid ecosystems.

Suggested Citation

  • Ying, Zhixia & Liao, Jinbao & Liu, Yongjie & Wang, Shichang & Lu, Hui & Ma, Liang & Chen, Dongdong & Li, Zhenqing, 2017. "Modelling tree-grass coexistence in water-limited ecosystems," Ecological Modelling, Elsevier, vol. 360(C), pages 387-398.
  • Handle: RePEc:eee:ecomod:v:360:y:2017:i:c:p:387-398
    DOI: 10.1016/j.ecolmodel.2017.07.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016306093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.07.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pueyo, Y. & Kéfi, S. & Díaz-Sierra, R. & Alados, C.L. & Rietkerk, M., 2010. "The role of reproductive plant traits and biotic interactions in the dynamics of semi-arid plant communities," Theoretical Population Biology, Elsevier, vol. 78(4), pages 289-297.
    2. Edith González Afanador & Michael E. Kjelland & X. Ben Wu & Neal Wilkins & William E. Grant, 2016. "Ownership property size, landscape structure, and spatial relationships in the Edwards Plateau of Texas (USA): landscape scale habitat management implications," Environment Systems and Decisions, Springer, vol. 36(3), pages 310-328, September.
    3. Andrew Kulmatiski & Karen H. Beard, 2013. "Woody plant encroachment facilitated by increased precipitation intensity," Nature Climate Change, Nature, vol. 3(9), pages 833-837, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zachary A. Collier & James H. Lambert & Igor Linkov, 2016. "Latest journal news and introduction to the September issue of environment systems and decisions," Environment Systems and Decisions, Springer, vol. 36(3), pages 223-224, September.
    2. Thoralf Meyer & Paul Holloway & Thomas B. Christiansen & Jennifer A. Miller & Paolo D’Odorico & Gregory S. Okin, 2019. "An Assessment of Multiple Drivers Determining Woody Species Composition and Structure: A Case Study from the Kalahari, Botswana," Land, MDPI, vol. 8(8), pages 1-14, August.
    3. Li, Huijie & Ma, Xiaojun & Lu, Yanwei & Ren, Ruiqi & Cui, Buli & Si, Bingcheng, 2021. "Growing deep roots has opposing impacts on the transpiration of apple trees planted in subhumid loess region," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Leilei Ding & Puchang Wang & Wen Zhang & Yu Zhang & Shige Li & Xin Wei & Xi Chen & Yujun Zhang & Fuli Yang, 2019. "Shrub Encroachment Shapes Soil Nutrient Concentration, Stoichiometry and Carbon Storage in an Abandoned Subalpine Grassland," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
    5. Richard D. Robertson & Alessandro De Pinto & Nicola Cenacchi, 2023. "Assessing the future global distribution of land ecosystems as determined by climate change and cropland incursion," Climatic Change, Springer, vol. 176(8), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:360:y:2017:i:c:p:387-398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.