IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v300y2015icp89-101.html
   My bibliography  Save this article

The site-scale processes affect species distribution predictions of forest landscape models

Author

Listed:
  • Liang, Yu
  • He, Hong S.
  • Wang, Wen J.
  • Fraser, Jacob S.
  • Wu, ZhiWei
  • Xu, Jiawei

Abstract

Forest landscape models (FLMs) are important tools for testing basic ecological theory and for exploring forest changes at landscape and regional scales. However, the ability of these models to accurately predict changes in tree species’ distributions and their spatial pattern may be significantly affected by the formulation of site-scale processes that simulate gap-level succession including seedling establishment, tree growth, competition, and mortality. Thus, the objective of this study is to evaluate the effects of site-scale processes on landscape-scale predictions of tree species’ distributions and spatial patterns.

Suggested Citation

  • Liang, Yu & He, Hong S. & Wang, Wen J. & Fraser, Jacob S. & Wu, ZhiWei & Xu, Jiawei, 2015. "The site-scale processes affect species distribution predictions of forest landscape models," Ecological Modelling, Elsevier, vol. 300(C), pages 89-101.
  • Handle: RePEc:eee:ecomod:v:300:y:2015:i:c:p:89-101
    DOI: 10.1016/j.ecolmodel.2015.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015000198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Jian & He, Hong S. & Shifley, Stephen R. & Thompson, Frank R. & Zhang, Yangjian, 2011. "An innovative computer design for modeling forest landscape change in very large spatial extents with fine resolutions," Ecological Modelling, Elsevier, vol. 222(15), pages 2623-2630.
    2. Scheller, Robert M. & Domingo, James B. & Sturtevant, Brian R. & Williams, Jeremy S. & Rudy, Arnold & Gustafson, Eric J. & Mladenoff, David J., 2007. "Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution," Ecological Modelling, Elsevier, vol. 201(3), pages 409-419.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Liu & Yu Liang & Hong S. He & Wen J. Wang & Chao Huang & Shengwei Zong & Lei Wang & Jiangtao Xiao & Haibo Du, 2018. "Long-Term Impacts of China’s New Commercial Harvest Exclusion Policy on Ecosystem Services and Biodiversity in the Temperate Forests of Northeast China," Sustainability, MDPI, vol. 10(4), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seidl, Rupert & Rammer, Werner & Scheller, Robert M. & Spies, Thomas A., 2012. "An individual-based process model to simulate landscape-scale forest ecosystem dynamics," Ecological Modelling, Elsevier, vol. 231(C), pages 87-100.
    2. Scheller, Robert & Kretchun, Alec & Hawbaker, Todd J. & Henne, Paul D., 2019. "A landscape model of variable social-ecological fire regimes," Ecological Modelling, Elsevier, vol. 401(C), pages 85-93.
    3. Seidl, Rupert & Fernandes, Paulo M. & Fonseca, Teresa F. & Gillet, François & Jönsson, Anna Maria & Merganičová, Katarína & Netherer, Sigrid & Arpaci, Alexander & Bontemps, Jean-Daniel & Bugmann, Hara, 2011. "Modelling natural disturbances in forest ecosystems: a review," Ecological Modelling, Elsevier, vol. 222(4), pages 903-924.
    4. Ager, Alan A. & Barros, Ana M.G. & Day, Michelle A. & Preisler, Haiganoush K. & Spies, Thomas A. & Bolte, John, 2018. "Analyzing fine-scale spatiotemporal drivers of wildfire in a forest landscape model," Ecological Modelling, Elsevier, vol. 384(C), pages 87-102.
    5. Conlisk, Erin & Syphard, Alexandra D. & Franklin, Janet & Regan, Helen M., 2015. "Predicting the impact of fire on a vulnerable multi-species community using a dynamic vegetation model," Ecological Modelling, Elsevier, vol. 301(C), pages 27-39.
    6. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    7. Miquelajauregui, Yosune & Cumming, Steven G. & Gauthier, Sylvie, 2019. "Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    8. Haga, Chihiro & Hotta, Wataru & Inoue, Takahiro & Matsui, Takanori & Aiba, Masahiro & Owari, Toshiaki & Suzuki, Satoshi N. & Shibata, Hideaki & Morimoto, Junko, 2022. "Modeling Tree Recovery in Wind-Disturbed Forests with Dense Understory Species under Climate Change," Ecological Modelling, Elsevier, vol. 472(C).
    9. Fitts, Lucia A. & Fraser, Jacob S. & Miranda, Brian R. & Domke, Grant M. & Russell, Matthew B. & Sturtevant, Brian R., 2023. "An iterative site-scale approach to calibrate and corroborate successional processes within a forest landscape model," Ecological Modelling, Elsevier, vol. 477(C).
    10. Fabritius, Henna & Knegt, Henrik de & Ovaskainen, Otso, 2021. "Effects of a mobile disturbance pattern on dynamic patch networks and metapopulation persistence," Ecological Modelling, Elsevier, vol. 460(C).
    11. Karam, Sarah L. & Weisberg, Peter J. & Scheller, Robert M. & Johnson, Dale W. & Miller, W. Wally, 2013. "Development and evaluation of a nutrient cycling extension for the LANDIS-II landscape simulation model," Ecological Modelling, Elsevier, vol. 250(C), pages 45-57.
    12. Larocque, Guy R. & Bhatti, Jagtar & Arsenault, André, 2014. "Integrated modelling software platform development for effective use of ecosystem models," Ecological Modelling, Elsevier, vol. 288(C), pages 195-202.
    13. Arseneault, Justin E. & Saunders, Mike R., 2012. "Incorporating canopy gap-induced growth responses into spatially implicit growth model projections," Ecological Modelling, Elsevier, vol. 237, pages 120-131.
    14. Chonggang Xu & George Gertner & Robert Scheller, 2012. "Importance of colonization and competition in forest landscape response to global climatic change," Climatic Change, Springer, vol. 110(1), pages 53-83, January.
    15. Scheller, Robert M. & Hua, Dong & Bolstad, Paul V. & Birdsey, Richard A. & Mladenoff, David J., 2011. "The effects of forest harvest intensity in combination with wind disturbance on carbon dynamics in Lake States Mesic Forests," Ecological Modelling, Elsevier, vol. 222(1), pages 144-153.
    16. Cantarello, Elena & Newton, Adrian C. & Hill, Ross A. & Tejedor-Garavito, Natalia & Williams-Linera, Guadalupe & López-Barrera, Fabiola & Manson, Robert H. & Golicher, Duncan J., 2011. "Simulating the potential for ecological restoration of dryland forests in Mexico under different disturbance regimes," Ecological Modelling, Elsevier, vol. 222(5), pages 1112-1128.
    17. Langhammer, Maria & Thober, Jule & Lange, Martin & Frank, Karin & Grimm, Volker, 2019. "Agricultural landscape generators for simulation models: A review of existing solutions and an outline of future directions," Ecological Modelling, Elsevier, vol. 393(C), pages 135-151.
    18. Inglis, Nicole C. & Vukomanovic, Jelena, 2020. "Climate change disproportionately affects visual quality of cultural ecosystem services in a mountain region," Ecosystem Services, Elsevier, vol. 45(C).
    19. de Bruijn, Arjan & Gustafson, Eric J. & Sturtevant, Brian R. & Foster, Jane R. & Miranda, Brian R. & Lichti, Nathanael I. & Jacobs, Douglass F., 2014. "Toward more robust projections of forest landscape dynamics under novel environmental conditions: Embedding PnET within LANDIS-II," Ecological Modelling, Elsevier, vol. 287(C), pages 44-57.
    20. De Jager, Nathan R. & Van Appledorn, Molly & Fox, Timothy J. & Rohweder, Jason J. & Guyon, Lyle J. & Meier, Andrew R. & Cosgriff, Robert J. & Vandermyde, Benjamin J., 2019. "Spatially explicit modelling of floodplain forest succession: interactions among flood inundation, forest successional processes, and other disturbances in the Upper Mississippi River floodplain, USA," Ecological Modelling, Elsevier, vol. 405(C), pages 15-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:300:y:2015:i:c:p:89-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.