IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v243y2012icp89-94.html
   My bibliography  Save this article

Speciation of fluvial forms from amphidromous forms of migratory populations

Author

Listed:
  • Omori, Koji
  • Ohnishi, Hidejiro
  • Hamaoka, Hideki
  • Kunihiro, Tadao
  • Ito, Sayaka
  • Kuwae, Michinobu
  • Hata, Hiroki
  • Miller, Todd W.
  • Iguchi, Keiichiro

Abstract

We present a mathematical model of the maintenance of polymorphism of fluvial and amphidromous types in a fish population. Downstream drifting of offspring after hatching and their subsequent upstream migration have an important effect on the maintenance of an upstream population. This model, which assumes a linear relationship of offspring mortality rate, nutritional conditions, and flow rate or inclination with the distance from the river mouth, enables us to calculate the number of recruits to the mother population. From the present analysis, we can predict that the fluvial type producing large embryos is selected in the upper reaches under conditions where there are large differences in offspring mortality and flow rate between the upper and lower reaches, and a small difference in nutritional conditions between these sites. Therefore, the fluvial type can be more easily evolved in tropical regions than temperate regions where the difference in nutritional conditions is relatively larger. This selection is promoted when offspring mortality decreases greatly with their size. Conversely, at the lower reaches of the same river, the amphidromous type producing many small embryos is favored. These two populations can be the polymorphism of a single population species in a river, and can be established as different species in terms of pre- or post-reproductive isolation mechanisms, such as assortative mating or habitat preference, even if their members mate with each other in a river. We can assert that sympatric speciation is common in fluvial environments, when this process really works, because other taxonomic groups, such as Annelida, Crustacea, and Mollusca, also have the same sympatric pair of fluvial and amphidromous species derived from marine origin, that is, so called the evolutionary invasion from marine to terrestrial environments.

Suggested Citation

  • Omori, Koji & Ohnishi, Hidejiro & Hamaoka, Hideki & Kunihiro, Tadao & Ito, Sayaka & Kuwae, Michinobu & Hata, Hiroki & Miller, Todd W. & Iguchi, Keiichiro, 2012. "Speciation of fluvial forms from amphidromous forms of migratory populations," Ecological Modelling, Elsevier, vol. 243(C), pages 89-94.
  • Handle: RePEc:eee:ecomod:v:243:y:2012:i:c:p:89-94
    DOI: 10.1016/j.ecolmodel.2012.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012002785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marta Barluenga & Kai N. Stölting & Walter Salzburger & Moritz Muschick & Axel Meyer, 2006. "Sympatric speciation in Nicaraguan crater lake cichlid fish," Nature, Nature, vol. 439(7077), pages 719-723, February.
    2. M. Higashi & G. Takimoto & N. Yamamura, 1999. "Sympatric speciation by sexual selection," Nature, Nature, vol. 402(6761), pages 523-526, December.
    3. Michael Doebeli & Ulf Dieckmann, 2003. "Speciation along environmental gradients," Nature, Nature, vol. 421(6920), pages 259-264, January.
    4. Alexey S. Kondrashov & Fyodor A. Kondrashov, 1999. "Interactions among quantitative traits in the course of sympatric speciation," Nature, Nature, vol. 400(6742), pages 351-354, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakamoto, T. & Innan, H., 2020. "Establishment process of a magic trait allele subject to both divergent selection and assortative mating," Theoretical Population Biology, Elsevier, vol. 135(C), pages 9-18.
    2. Mazzucco, Rupert & Van Nguyen, Tuyen & Kim, Dong-Hwan & Chon, Tae-Soo & Dieckmann, Ulf, 2015. "Adaptation of aquatic insects to the current flow in streams," Ecological Modelling, Elsevier, vol. 309, pages 143-152.
    3. Jianhua Wang & Guan-Zhu Han, 2023. "Genome mining shows that retroviruses are pervasively invading vertebrate genomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Åke Brännström & Jacob Johansson & Niels Von Festenberg, 2013. "The Hitchhiker’s Guide to Adaptive Dynamics," Games, MDPI, vol. 4(3), pages 1-25, June.
    5. MacPherson, Brian & Gras, Robin, 2016. "Individual-based ecological models: Adjunctive tools or experimental systems?," Ecological Modelling, Elsevier, vol. 323(C), pages 106-114.
    6. Rubén Moreno-Opo & Mariana Fernández-Olalla & Antoni Margalida & Ángel Arredondo & Francisco Guil, 2012. "Effect of Methodological and Ecological Approaches on Heterogeneity of Nest-Site Selection of a Long-Lived Vulture," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-9, March.
    7. Benjamin Allen & Christine Sample & Yulia Dementieva & Ruben C Medeiros & Christopher Paoletti & Martin A Nowak, 2015. "The Molecular Clock of Neutral Evolution Can Be Accelerated or Slowed by Asymmetric Spatial Structure," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-32, February.
    8. Reyes, Elijah & Cunliffe, Finnerty & M’Gonigle, Leithen K., 2023. "Evolutionary dynamics of dispersal and local adaptation in multi-resource landscapes," Theoretical Population Biology, Elsevier, vol. 153(C), pages 102-110.
    9. Maria Terres & Alan Gelfand, 2015. "Using spatial gradient analysis to clarify species distributions with application to South African protea," Journal of Geographical Systems, Springer, vol. 17(3), pages 227-247, July.
    10. Cressman, Ross & Halloway, Abdel & McNickle, Gordon G. & Apaloo, Joe & Brown, Joel S. & Vincent, Thomas L., 2017. "Unlimited niche packing in a Lotka–Volterra competition game," Theoretical Population Biology, Elsevier, vol. 116(C), pages 1-17.
    11. Seo Yeon Byeon & Kyeong-Sik Cheon & Sangil Kim & Suk-Hyun Yun & Hyun-Ju Oh & Sang Rul Park & Tae-Hoon Kim & Jang Kyun Kim & Hyuk Je Lee, 2020. "Comparative Analysis of Sequence Polymorphism in Complete Organelle Genomes of the ‘Golden Tide’ Seaweed Sargassum horneri between Korean and Chinese Forms," Sustainability, MDPI, vol. 12(18), pages 1-14, September.
    12. Bagnoli, Franco & Guardiani, Carlo, 2005. "A model of sympatric speciation through assortative mating," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 534-574.
    13. Melisa Olave & Alexander Nater & Andreas F. Kautt & Axel Meyer, 2022. "Early stages of sympatric homoploid hybrid speciation in crater lake cichlid fishes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Yvonne Willi & Kay Lucek & Olivier Bachmann & Nora Walden, 2022. "Recent speciation associated with range expansion and a shift to self-fertilization in North American Arabidopsis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Bhattacharyay, A. & Drossel, B., 2005. "Modeling coevolution and sympatric speciation of flowers and pollinators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 159-172.
    16. David, Olivier & Lannou, Christian & Monod, Hervé & Papaïx, Julien & Traore, Djidi, 2017. "Adaptive diversification in heterogeneous environments," Theoretical Population Biology, Elsevier, vol. 114(C), pages 1-9.
    17. Mirrahimi, Sepideh & Raoul, Gaël, 2013. "Dynamics of sexual populations structured by a space variable and a phenotypical trait," Theoretical Population Biology, Elsevier, vol. 84(C), pages 87-103.
    18. José Camacho Mateu & Matteo Sireci & Miguel A Muñoz, 2021. "Phenotypic-dependent variability and the emergence of tolerance in bacterial populations," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-28, September.
    19. José Martín Pujolar & Mozes P. K. Blom & Andrew Hart Reeve & Jonathan D. Kennedy & Petter Zahl Marki & Thorfinn S. Korneliussen & Benjamin G. Freeman & Katerina Sam & Ethan Linck & Tri Haryoko & Bulis, 2022. "The formation of avian montane diversity across barriers and along elevational gradients," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Rettelbach, Agnes & Hermisson, Joachim & Dieckmann, Ulf & Kopp, Michael, 2011. "Effects of genetic architecture on the evolution of assortative mating under frequency-dependent disruptive selection," Theoretical Population Biology, Elsevier, vol. 79(3), pages 82-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:243:y:2012:i:c:p:89-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.