IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i19p2409-2414.html
   My bibliography  Save this article

Continuous versus binary representations of landscape heterogeneity in spatially-explicit models of mobile populations

Author

Listed:
  • Stoddard, Steven T.

Abstract

How a landscape is represented is an important structural assumption in spatially-explicit simulation models. Simple models tend to specify just habitat and non-habitat (binary), while more complex models may use multiple levels or a continuum of habitat quality (continuous). How these different representations influence model projections is unclear. To assess the influence of landscape representation on population models, I developed a general, individual-based model with local dispersal and examined population persistence across binary and continuous landscapes varying in the amount and fragmentation of habitat. In binary and continuous landscapes habitat and non-habitat were assigned a unique mean suitability. In continuous landscapes, suitability of each individual site was then drawn from a normal distribution with fixed variance. Populations went extinct less often and abundances were higher in continuous landscapes. Production in habitat and non-habitat was higher in continuous landscapes, because the range of habitat suitability sampled by randomly dispersing individuals was higher than the overall mean habitat suitability. Increasing mortality, dispersal distance, and spatial heterogeneity all increased the discrepancy between continuous and binary landscapes. The effect of spatial structure on the probability of extinction was greater in binary landscapes. These results show that, under certain circumstances, model projections are influenced by how variation in suitability within a landscape is represented. Care should be taken to assess how a given species actually perceives the landscape when conducting population viability analyses or empirical validation of theory.

Suggested Citation

  • Stoddard, Steven T., 2010. "Continuous versus binary representations of landscape heterogeneity in spatially-explicit models of mobile populations," Ecological Modelling, Elsevier, vol. 221(19), pages 2409-2414.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:19:p:2409-2414
    DOI: 10.1016/j.ecolmodel.2010.06.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010003121
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.06.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pe’er, Guy & Kramer-Schadt, Stephanie, 2008. "Incorporating the perceptual range of animals into connectivity models," Ecological Modelling, Elsevier, vol. 213(1), pages 73-85.
    2. E Penelope Holland & James N Aegerter & Calvin Dytham & Graham C Smith, 2007. "Landscape as a Model: The Importance of Geometry," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinping Ye & Andrew K Skidmore & Tiejun Wang, 2014. "Joint Effects of Habitat Heterogeneity and Species’ Life-History Traits on Population Dynamics in Spatially Structured Landscapes," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-10, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imron, Muhammad Ali & Gergs, Andre & Berger, Uta, 2012. "Structure and sensitivity analysis of individual-based predator–prey models," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 71-81.
    2. Vinatier, F. & Chauvet, M., 2017. "A neutral model for the simulation of linear networks in territories," Ecological Modelling, Elsevier, vol. 363(C), pages 8-16.
    3. Katherine A. Zeller & David W. Wattles & Javan M. Bauder & Stephen DeStefano, 2020. "Forecasting Seasonal Habitat Connectivity in a Developing Landscape," Land, MDPI, vol. 9(7), pages 1-20, July.
    4. Ortigoza, Gerardo M., 2015. "Unstructured triangular cellular automata for modeling geographic spread," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 520-536.
    5. Juliana Menger & William E Magnusson & Marti J Anderson & Martin Schlegel & Guy Pe’er & Klaus Henle, 2017. "Environmental characteristics drive variation in Amazonian understorey bird assemblages," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-20, February.
    6. Slone, D.H., 2011. "Increasing accuracy of dispersal kernels in grid-based population models," Ecological Modelling, Elsevier, vol. 222(3), pages 573-579.
    7. Malishev, Matthew & Kramer-Schadt, Stephanie, 2021. "Movement, models, and metabolism: Individual-based energy budget models as next-generation extensions for predicting animal movement outcomes across scales," Ecological Modelling, Elsevier, vol. 441(C).
    8. Jager, Henriette I. & DeAngelis, Donald L., 2018. "The confluences of ideas leading to, and the flow of ideas emerging from, individual-based modeling of riverine fishes," Ecological Modelling, Elsevier, vol. 384(C), pages 341-352.
    9. Mancy, Rebecca & Prosser, Patrick & Rogers, Simon, 2013. "Discrete and continuous time simulations of spatial ecological processes predict different final population sizes and interspecific competition outcomes," Ecological Modelling, Elsevier, vol. 259(C), pages 50-61.
    10. Benjamin P Pauli & Nicholas P McCann & Patrick A Zollner & Robert Cummings & Jonathan H Gilbert & Eric J Gustafson, 2013. "SEARCH: Spatially Explicit Animal Response to Composition of Habitat," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-14, May.
    11. Koenig, Shantel J. & Bender, Darren J., 2018. "Increasing the function in distance-based functional connectivity assessments: a modified spatial interaction model (SIM) approach," Ecological Modelling, Elsevier, vol. 386(C), pages 47-58.
    12. Yang, Tianxiang & Jing, Dong & Wang, Shoubing, 2015. "Applying and exploring a new modeling approach of functional connectivity regarding ecological network: A case study on the dynamic lines of space syntax," Ecological Modelling, Elsevier, vol. 318(C), pages 126-137.
    13. Hérivaux, C. & Vinatier, F. & Sabir, M. & Guillot, F. & Rinaudo, J.D., 2021. "Combining narrative scenarios, local knowledge and land-use change modelling for integrating soil erosion in a global perspective," Land Use Policy, Elsevier, vol. 105(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:19:p:2409-2414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.