IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i13p1731-1743.html
   My bibliography  Save this article

Effects of changing climate on water and nitrogen availability with implications on the productivity of Norway spruce stands in Southern Finland

Author

Listed:
  • Ge, Zhen-ming
  • Zhou, Xiao
  • Kellomäki, Seppo
  • Wang, Kai-yun
  • Peltola, Heli
  • Väisänen, Hannu
  • Strandman, Harri

Abstract

An integrated process-based model was used to study how the changing climate affects the availability of water and nitrogen, and consequently the dynamics of productivity of Norway spruce (Picea abies) on sites with different initial soil water conditions in southern Finland over a 100-year period. The sensitivity of the total stem volume growth in relation to short-term availability of water and nitrogen was also analyzed. We found that a high proportion (about 88–92%) of the total precipitation was lost in total evapotranspiration (incl. canopy evaporation (Ec), transpiration (Et) and ground surface evaporation (Eg)), under both current and changing climate. Furthermore, under the changing climate the cumulative amount of Ec and Eg were significantly higher, while Et was largely lower than under the current climate. Additionally, the elevated temperature and increased expansion of needle area index (L) enhanced Ec. Under the changing climate, the increasing soil water deficit (Wd) reduced the canopy stomatal conductance (gcs), the Et, humus yield (H, available nitrogen source) and nitrogen uptake (Nup) of the trees. During the latter phases of the simulation period, the canopy net photosynthesis (Pnc) was lower due to the reduced Nup and soil water availability. This also reduced the total stem volume production (Vs) on the site with the lower initial soil moisture content. The growth was slightly more sensitive to the change in precipitation than to the change in nitrogen content of the needles, when the elevated temperature was assumed. According to our findings, drought stress episodes may become more frequent under the changing climate. Thus, adaptive management strategies should be developed to sustain the productivity of Norway spruce in these conditions, and thus, to mitigate the adverse impacts of climate change.

Suggested Citation

  • Ge, Zhen-ming & Zhou, Xiao & Kellomäki, Seppo & Wang, Kai-yun & Peltola, Heli & Väisänen, Hannu & Strandman, Harri, 2010. "Effects of changing climate on water and nitrogen availability with implications on the productivity of Norway spruce stands in Southern Finland," Ecological Modelling, Elsevier, vol. 221(13), pages 1731-1743.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:13:p:1731-1743
    DOI: 10.1016/j.ecolmodel.2010.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010001626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.03.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Jarvis & Sune Linder, 2000. "Constraints to growth of boreal forests," Nature, Nature, vol. 405(6789), pages 904-905, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen-Ming Ge & Seppo Kellomäki & Heli Peltola & Xiao Zhou & Hannu Väisänen, 2013. "Adaptive management to climate change for Norway spruce forests along a regional gradient in Finland," Climatic Change, Springer, vol. 118(2), pages 275-289, May.
    2. Gaudio, Noémie & Belyazid, Salim & Gendre, Xavier & Mansat, Arnaud & Nicolas, Manuel & Rizzetto, Simon & Sverdrup, Harald & Probst, Anne, 2015. "Combined effect of atmospheric nitrogen deposition and climate change on temperate forest soil biogeochemistry: A modeling approach," Ecological Modelling, Elsevier, vol. 306(C), pages 24-34.
    3. Laine-Kaulio, Hanne & Koivusalo, Harri & Komarov, Alexander S. & Lappalainen, Mari & Launiainen, Samuli & Laurén, Ari, 2014. "Extending the ROMUL model to simulate the dynamics of dissolved and sorbed C and N compounds in decomposing boreal mor," Ecological Modelling, Elsevier, vol. 272(C), pages 277-292.
    4. Zhen-Ming Ge & Seppo Kellomäki & Heli Peltola & Xiao Zhou & Hannu Väisänen & Harri Strandman, 2013. "Impacts of climate change on primary production and carbon sequestration of boreal Norway spruce forests: Finland as a model," Climatic Change, Springer, vol. 118(2), pages 259-273, May.
    5. Timothy Frye & Andrei Yakovlev, 2015. "Elections and Property Rights: Evidence from a Natural Experiment in Russia," HSE Working papers WP BRP 29/PS/2015, National Research University Higher School of Economics.
    6. Gong, Jinnan & Wang, Kaiyun & Kellomäki, Seppo & Zhang, Chao & Martikainen, Pertti J. & Shurpali, Narasinha, 2012. "Modeling water table changes in boreal peatlands of Finland under changing climate conditions," Ecological Modelling, Elsevier, vol. 244(C), pages 65-78.
    7. Brecka, Aaron F.J. & Shahi, Chander & Chen, Han Y.H., 2018. "Climate change impacts on boreal forest timber supply," Forest Policy and Economics, Elsevier, vol. 92(C), pages 11-21.
    8. Ge, Zhen-Ming & Zhou, Xiao & Kellomäki, Seppo & Peltola, Heli & Wang, Kai-Yun, 2011. "Climate, canopy conductance and leaf area development controls on evapotranspiration in a boreal coniferous forest over a 10-year period: A united model assessment," Ecological Modelling, Elsevier, vol. 222(9), pages 1626-1638.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulo A.L.D. Nunes & Helen Ding & Sonja Teelucksingh, 2010. "European Forests and Carbon Sequestration Services: An Economic Assessment of Climate Change Impacts," Working Papers 2010.10, Fondazione Eni Enrico Mattei.
    2. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    3. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "Assessing nitrogen controls on carbon, water and energy exchanges in major plant functional types across North America using a carbon and nitrogen coupled ecosystem model," Ecological Modelling, Elsevier, vol. 323(C), pages 12-27.
    4. Chen, Bin & Arain, M. Altaf & Chen, Jing M. & Croft, Holly & Grant, Robert F. & Kurz, Werner A. & Bernier, Pierre & Guindon, Luc & Price, David & Wang, Ziyu, 2016. "Evaluating the impacts of climate variability and cutting and insect defoliation on the historical carbon dynamics of a boreal black spruce forest landscape in eastern Canada," Ecological Modelling, Elsevier, vol. 321(C), pages 98-109.
    5. F. Orlandi & H. Garcia-Mozo & A. Dhiab & C. Galán & M. Msallem & B. Romano & M. Abichou & E. Dominguez-Vilches & M. Fornaciari, 2013. "Climatic indices in the interpretation of the phenological phases of the olive in mediterranean areas during its biological cycle," Climatic Change, Springer, vol. 116(2), pages 263-284, January.
    6. Helen Ding & Silvia Silvestri & Aline Chiabai & Paulo A.L.D. Nunes, 2010. "A Hybrid Approach to the Valuation of Climate Change Effects on Ecosystem Services: Evidence from the European Forests," Working Papers 2010.50, Fondazione Eni Enrico Mattei.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:13:p:1731-1743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.