IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Stochastic optimal policies when the discount rate vanishes

  • Nishimura, Kazuo
  • Stachurski, John

Dutta (J. Econom. Theory, 1991, 55, 64?94) showed that long-run optimality of the limit of discounted optima when the discount rate vanishes is implied by a certain bound on the value function of the optimal program. We introduce a new method to verify this bound using coupling techniques.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6V85-4KRY3J4-1/2/fccd8978171d3f3764f6e6e108091916
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Economic Dynamics and Control.

Volume (Year): 31 (2007)
Issue (Month): 4 (April)
Pages: 1416-1430

as
in new window

Handle: RePEc:eee:dyncon:v:31:y:2007:i:4:p:1416-1430
Contact details of provider: Web page: http://www.elsevier.com/locate/jedc

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Mirman, Leonard J. & Zilcha, Itzhak, 1975. "On optimal growth under uncertainty," Journal of Economic Theory, Elsevier, vol. 11(3), pages 329-339, December.
  2. Dutta, Prajit K., 1991. "What do discounted optima converge to?: A theory of discount rate asymptotics in economic models," Journal of Economic Theory, Elsevier, vol. 55(1), pages 64-94, October.
  3. Mirman, Leonard J. & Morand, Olivier F. & Reffett, Kevin L., 2008. "A qualitative approach to Markovian equilibrium in infinite horizon economies with capital," Journal of Economic Theory, Elsevier, vol. 139(1), pages 75-98, March.
  4. Dutta, P.K., 1991. "What Do Discounted Optima Converge To? A Theory of Discount Rate Asymptotics in Economic Models," RCER Working Papers 264, University of Rochester - Center for Economic Research (RCER).
  5. Rosenthal J.S., 2003. "Asymptotic Variance and Convergence Rates of Nearly-Periodic Markov Chain Monte Carlo Algorithms," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 169-177, January.
  6. Nishimura, Kazuo & Stachurski, John, 2005. "Stability of stochastic optimal growth models: a new approach," Journal of Economic Theory, Elsevier, vol. 122(1), pages 100-118, May.
  7. Brock, William A. & Mirman, Leonard J., 1972. "Optimal economic growth and uncertainty: The discounted case," Journal of Economic Theory, Elsevier, vol. 4(3), pages 479-513, June.
  8. Danthine, Jean-Pierre & Donaldson, John B, 1981. "Stochastic Properties of Fast vs. Slow Growing Economies," Econometrica, Econometric Society, vol. 49(4), pages 1007-33, June.
  9. Hopenhayn, Hugo A & Prescott, Edward C, 1992. "Stochastic Monotonicity and Stationary Distributions for Dynamic Economies," Econometrica, Econometric Society, vol. 60(6), pages 1387-406, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:31:y:2007:i:4:p:1416-1430. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.