IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v67y2013icp149-161.html

Robust fitting of a Weibull model with optional censoring

Author

Listed:
  • Yang, Jingjing
  • Scott, David W.

Abstract

The Weibull family is widely used to model failure data, or lifetime data, although the classical two-parameter Weibull distribution is limited to positive data and monotone failure rate. The parameters of the Weibull model are commonly obtained by maximum likelihood estimation; however, it is well-known that this estimator is not robust when dealing with contaminated data. A new robust procedure is introduced to fit a Weibull model by using L2 distance, i.e. integrated square distance, of the Weibull probability density function. The Weibull model is augmented with a weight parameter to robustly deal with contaminated data. Results comparing a maximum likelihood estimator with an L2 estimator are given in this article, based on both simulated and real data sets. It is shown that this new L2 parametric estimation method is more robust and does a better job than maximum likelihood in the newly proposed Weibull model when data are contaminated. The same preference for L2 distance criterion and the new Weibull model also happens for right-censored data with contamination.

Suggested Citation

  • Yang, Jingjing & Scott, David W., 2013. "Robust fitting of a Weibull model with optional censoring," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 149-161.
  • Handle: RePEc:eee:csdana:v:67:y:2013:i:c:p:149-161
    DOI: 10.1016/j.csda.2013.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313001825
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.05.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Richard L. Smith & J. C. Naylor, 1987. "A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 358-369, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre‐Yves Deléamont & Elvezio Ronchetti, 2022. "Robust inference with censored survival data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1496-1533, December.
    2. Ahmed Zohair Djeddi & Ahmed Hafaifa & Abdellah Kouzou & Salam Abudura, 2017. "Exploration of reliability algorithms using modified Weibull distribution: application on gas turbine," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1885-1894, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haitham M. Yousof & Hafida Goual & Walid Emam & Yusra Tashkandy & Morad Alizadeh & M. Masoom Ali & Mohamed Ibrahim, 2023. "An Alternative Model for Describing the Reliability Data: Applications, Assessment, and Goodness-of-Fit Validation Testing," Mathematics, MDPI, vol. 11(6), pages 1-26, March.
    2. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    3. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    4. Maha A Aldahlan & Farrukh Jamal & Christophe Chesneau & Ibrahim Elbatal & Mohammed Elgarhy, 2020. "Exponentiated power generalized Weibull power series family of distributions: Properties, estimation and applications," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-25, March.
    5. Roberts, Leigh A., 2015. "Distribution free testing of goodness of fit in a one dimensional parameter space," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 215-222.
    6. Haitham M. Yousof & Yusra Tashkandy & Walid Emam & M. Masoom Ali & Mohamed Ibrahim, 2023. "A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
    7. Aliyu Ismail Ishaq & Alfred Adewole Abiodun, 2020. "The Maxwell–Weibull Distribution in Modeling Lifetime Datasets," Annals of Data Science, Springer, vol. 7(4), pages 639-662, December.
    8. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    9. A. Shabani & M. Khaleghi Moghadam & A. Gholami & E. Moradi, 2018. "Exponentiated Power Lindley Logarithmic: Model, Properties and Applications," Annals of Data Science, Springer, vol. 5(4), pages 583-613, December.
    10. Sanku Dey & Vikas Kumar Sharma & Mhamed Mesfioui, 2017. "A New Extension of Weibull Distribution with Application to Lifetime Data," Annals of Data Science, Springer, vol. 4(1), pages 31-61, March.
    11. Ali Genç, 2013. "A skew extension of the slash distribution via beta-normal distribution," Statistical Papers, Springer, vol. 54(2), pages 427-442, May.
    12. Ayman Alzaatreh & Mohammad A. Aljarrah & Michael Smithson & Saman Hanif Shahbaz & Muhammad Qaiser Shahbaz & Felix Famoye & Carl Lee, 2021. "Truncated Family of Distributions with Applications to Time and Cost to Start a Business," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 5-27, March.
    13. Mukhtar M. Salah & M. El-Morshedy & M. S. Eliwa & Haitham M. Yousof, 2020. "Expanded Fréchet Model: Mathematical Properties, Copula, Different Estimation Methods, Applications and Validation Testing," Mathematics, MDPI, vol. 8(11), pages 1-29, November.
    14. Morad Alizadeh & Ahmed Z. Afify & M. S. Eliwa & Sajid Ali, 2020. "The odd log-logistic Lindley-G family of distributions: properties, Bayesian and non-Bayesian estimation with applications," Computational Statistics, Springer, vol. 35(1), pages 281-308, March.
    15. Raid Al-Aqtash & Avishek Mallick & G.G. Hamedani & Mahmoud Aldeni, 2021. "On the Gumbel-Burr XII Distribution: Regression and Application," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(6), pages 1-31, December.
    16. Jukic, Dragan & Bensic, Mirta & Scitovski, Rudolf, 2008. "On the existence of the nonlinear weighted least squares estimate for a three-parameter Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4502-4511, May.
    17. Ahmed Z. Afify & Haitham M. Yousof & Gauss M. Cordeiro & Edwin M. M. Ortega & Zohdy M. Nofal, 2016. "The Weibull Fréchet distribution and its applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2608-2626, October.
    18. Rama Shanker, 2016. "Sujatha Distribution And Its Applications," Statistics in Transition New Series, Polish Statistical Association, vol. 17(3), pages 391-410, September.
    19. Cordeiro, Gauss M. & Lemonte, Artur J., 2011. "The [beta]-Birnbaum-Saunders distribution: An improved distribution for fatigue life modeling," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1445-1461, March.
    20. Odom Conleth Chinazom & Nduka Ethelbert Chinaka & Ijomah Maxwell Azubuike, 2019. "The Marshall-Olkin Extended Weibull-Exponential Distribution: Properties and Applications," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 9(10), pages 158-172, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • L2 - Industrial Organization - - Firm Objectives, Organization, and Behavior

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:67:y:2013:i:c:p:149-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.