IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Sample size requirements to detect an intervention by time interaction in longitudinal cluster randomized clinical trials with random slopes

  • Heo, Moonseong
  • Xue, Xiaonan
  • Kim, Mimi Y.
Registered author(s):

    In longitudinal cluster randomized clinical trials (cluster-RCT), subjects are nested within a higher level unit such as clinics and are evaluated for outcome repeatedly over the study period. This study design results in a three level hierarchical data structure. When the primary goal is to test the hypothesis that an intervention has an effect on the rate of change in the outcome over time and the between-subject variation in slopes is substantial, the subject-specific slopes are often modeled as random coefficients in a mixed-effects linear model. In this paper, we propose approaches for determining the samples size for each level of a 3-level hierarchical trial design based on ordinary least squares (OLS) estimates for detecting a difference in mean slopes between two intervention groups when the slopes are modeled as random. Notably, the sample size is not a function of the variances of either the second or the third level random intercepts and depends on the number of second and third level data units only through their product. Simulation results indicate that the OLS-based power and sample sizes are virtually identical to the empirical maximum likelihood based estimates even with varying cluster sizes. Sample sizes for random versus fixed slope models are also compared. The effects of the variance of the random slope on the sample size determinations are shown to be enormous. Therefore, when between-subject variations in outcome trends are anticipated to be significant, sample size determinations based on a fixed slope model can result in a seriously underpowered study.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312004185
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 60 (2013)
    Issue (Month): C ()
    Pages: 169-178

    as
    in new window

    Handle: RePEc:eee:csdana:v:60:y:2013:i:c:p:169-178
    Contact details of provider: Web page: http://www.elsevier.com/locate/csda

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:60:y:2013:i:c:p:169-178. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.