IDEAS home Printed from
   My bibliography  Save this article

An EM algorithm for the proportional hazards model with doubly censored data


  • Kim, Yongdai
  • Kim, Joungyoun
  • Jang, Woncheol


In this paper, we consider a new procedure for estimating parameters in the proportional hazards model with doubly censored data. Computing the maximum likelihood estimator with doubly censored data is often nontrivial and requires a certain constraint optimization procedure, which is computationally unstable and sometimes fails to converge. We propose an approximated likelihood and study the maximum approximated likelihood estimator, which is obtained by maximizing the approximated likelihood. In comparison to the maximum likelihood estimator, this new estimator is stable and always converges with an efficient EM algorithm we develop. The stability of the new estimator even with moderate sample sizes is amply demonstrated through simulated and real data. For theoretical justification of the approximated likelihood, we show the consistency of the maximum approximated likelihood estimator.

Suggested Citation

  • Kim, Yongdai & Kim, Joungyoun & Jang, Woncheol, 2013. "An EM algorithm for the proportional hazards model with doubly censored data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 41-51.
  • Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:41-51
    DOI: 10.1016/j.csda.2012.06.001

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Jong S. Kim, 2003. "Maximum likelihood estimation for the proportional hazards model with partly interval-censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 489-502.
    2. Kim, Yongdai & Kim, Bumsoo & Jang, Woncheol, 2010. "Asymptotic properties of the maximum likelihood estimator for the proportional hazards model with doubly censored data," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1339-1351, July.
    3. T. Cai, 2004. "Semiparametric regression analysis for doubly censored data," Biometrika, Biometrika Trust, vol. 91(2), pages 277-290, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Xu, Wenjing & Pan, Qing & Gastwirth, Joseph L., 2014. "Cox proportional hazards models with frailty for negatively correlated employment processes," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 295-307.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:41-51. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.