IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i12p3257-3270.html
   My bibliography  Save this article

A new flexible direct ROC regression model: Application to the detection of cardiovascular risk factors by anthropometric measures

Author

Listed:
  • Rodríguez-Álvarez, María Xosé
  • Roca-Pardiñas, Javier
  • Cadarso-Suárez, Carmen

Abstract

The receiver operating characteristic (ROC) curve is the most widely used measure for evaluating the accuracy of diagnostic tests in terms of differentiating between two conditions. It is known that, in certain circumstances, the characteristics of the patient or the place where the diagnostic test is performed can modify the test's accuracy. A new estimator for the conditional ROC curve, based on direct modelling, is proposed. In this approach, the effect of covariates and false positive fraction on the ROC curve is modelled non-parametrically using generalised additive models (GAM) combined with local polynomial kernel smoothers. The method allows for incorporation of more than one covariate in the regression model for the ROC curve and the possible interaction between them. The proposed model's performance is examined in an in-depth simulation study. Finally, endocrine data are analysed with the aim of assessing the performance of several anthropometric measures in predicting clusters of cardiovascular risk factors in an adult population in Galicia (NW Spain), with adjustment for age and gender.

Suggested Citation

  • Rodríguez-Álvarez, María Xosé & Roca-Pardiñas, Javier & Cadarso-Suárez, Carmen, 2011. "A new flexible direct ROC regression model: Application to the detection of cardiovascular risk factors by anthropometric measures," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3257-3270, December.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:12:p:3257-3270
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311002118
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yingye Zheng & Patrick Heagerty, 2004. "Semiparametric Estimation of Time-Dependent: ROC Curves for Longitudinal Marker Data," UW Biostatistics Working Paper Series 1052, Berkeley Electronic Press.
    2. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114.
    3. Opsomer, Jean D., 2000. "Asymptotic Properties of Backfitting Estimators," Journal of Multivariate Analysis, Elsevier, vol. 73(2), pages 166-179, May.
    4. Rodríguez-Álvarez, María Xosé & Tahoces, Pablo G. & Cadarso-Suárez, Carmen & Lado, María José, 2011. "Comparative study of ROC regression techniques--Applications for the computer-aided diagnostic system in breast cancer detection," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 888-902, January.
    5. Lopez-de-Ullibarri, Ignacio & Cao, Ricardo & Cadarso-Suarez, Carmen & Lado, Maria J., 2008. "Nonparametric estimation of conditional ROC curves: Application to discrimination tasks in computerized detection of early breast cancer," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2623-2631, January.
    6. Jens Perch Nielsen & Stefan Sperlich, 2005. "Smooth backfitting in practice," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 43-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coolen-Maturi, Tahani & Elkhafifi, Faiza F. & Coolen, Frank P.A., 2014. "Three-group ROC analysis: A nonparametric predictive approach," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 69-81.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:12:p:3257-3270. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.