IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i5p1355-1371.html
   My bibliography  Save this article

Data-driven neighborhood selection of a Gaussian field

Author

Listed:
  • Verzelen, Nicolas

Abstract

The nonparametric covariance estimation of a stationary Gaussian field X observed on a lattice is investigated. To tackle this issue, a neighborhood selection procedure has been recently introduced. This procedure amounts to selecting a neighborhood by a penalization method and estimating the covariance of X in the space of Gaussian Markov random fields (GMRFs) with neighborhood . Such a strategy is shown to satisfy oracle inequalities as well as minimax adaptive properties. However, it suffers several drawbacks which make the method difficult to apply in practice: the penalty depends on some unknown quantities and the procedure is only defined for toroidal lattices. The contribution is threefold. Firstly, a data-driven algorithm is proposed for tuning the penalty function. Secondly, the procedure is extended to non-toroidal lattices. Thirdly, numerical study illustrates the performances of the method on simulated examples. These simulations suggest that Gaussian Markov random field selection is often a good alternative to variogram estimation.

Suggested Citation

  • Verzelen, Nicolas, 2010. "Data-driven neighborhood selection of a Gaussian field," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1355-1371, May.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:5:p:1355-1371
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00439-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guyon, Xavier & Yao, Jian-feng, 1999. "On the Underfitting and Overfitting Sets of Models Chosen by Order Selection Criteria," Journal of Multivariate Analysis, Elsevier, vol. 70(2), pages 221-249, August.
    2. Hååvard Rue & Hååkon Tjelmeland, 2002. "Fitting Gaussian Markov Random Fields to Gaussian Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 31-49, March.
    3. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    4. IM, Hae Kyung & Stein, Michael L. & Zhu, Zhengyuan, 2007. "Semiparametric Estimation of Spectral Density With Irregular Observations," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 726-735, June.
    5. Song, Hae-Ryoung & Fuentes, Montserrat & Ghosh, Sujit, 2008. "A comparative study of Gaussian geostatistical models and Gaussian Markov random field models," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1681-1697, September.
    6. Cressie, Noel & Verzelen, Nicolas, 2008. "Conditional-mean least-squares fitting of Gaussian Markov random fields to Gaussian fields," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2794-2807, January.
    7. Dass S.C. & Nair V.N., 2003. "Edge Detection, Spatial Smoothing, and Image Reconstruction With Partially Observed Multivariate Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 77-89, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter W Gething & Anand P Patil & Simon I Hay, 2010. "Quantifying Aggregated Uncertainty in Plasmodium falciparum Malaria Prevalence and Populations at Risk via Efficient Space-Time Geostatistical Joint Simulation," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-12, April.
    2. I. Gede Nyoman Mindra Jaya & Henk Folmer, 2022. "Spatiotemporal high-resolution prediction and mapping: methodology and application to dengue disease," Journal of Geographical Systems, Springer, vol. 24(4), pages 527-581, October.
    3. Angela Ferretti & L. Ippoliti & P. Valentini & R. J. Bhansali, 2023. "Long memory conditional random fields on regular lattices," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    4. White, Gentry & Ghosh, Sujit K., 2009. "A stochastic neighborhood conditional autoregressive model for spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3033-3046, June.
    5. Zammit-Mangion, Andrew & Rougier, Jonathan, 2018. "A sparse linear algebra algorithm for fast computation of prediction variances with Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 116-130.
    6. Giovanna Jona Lasinio & Gianluca Mastrantonio & Alessio Pollice, 2013. "Discussing the “big n problem”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 97-112, March.
    7. Bolin, David & Lindgren, Finn, 2013. "A comparison between Markov approximations and other methods for large spatial data sets," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 7-21.
    8. Ying C. MacNab, 2018. "Rejoinder on: Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 554-569, September.
    9. Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
    10. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    11. Brown, Paul T. & Joshi, Chaitanya & Joe, Stephen & Rue, Håvard, 2021. "A novel method of marginalisation using low discrepancy sequences for integrated nested Laplace approximations," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    12. Michaela Prokešová & Eva Jensen, 2013. "Asymptotic Palm likelihood theory for stationary point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 387-412, April.
    13. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    14. Yuan Yan & Eva Cantoni & Chris Field & Margaret Treble & Joanna Mills Flemming, 2023. "Spatiotemporal modeling of mature‐at‐length data using a sliding window approach," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    15. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    16. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    17. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    18. Bondo, Kristin J. & Rosenberry, Christopher S. & Stainbrook, David & Walter, W. David, 2024. "Comparing risk of chronic wasting disease occurrence using Bayesian hierarchical spatial models and different surveillance types," Ecological Modelling, Elsevier, vol. 493(C).
    19. Daniel Cervone & Alex D’Amour & Luke Bornn & Kirk Goldsberry, 2016. "A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 585-599, April.
    20. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:5:p:1355-1371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.