IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v209y2025ics0167947325000453.html
   My bibliography  Save this article

Functional nonlinear principal component analysis

Author

Listed:
  • Zhong, Qingzhi
  • Song, Xinyuan

Abstract

The widely adopted dimension reduction technique, functional principal component analysis (FPCA), typically represents functional data as a linear combination of functional principal components (FPCs) and their corresponding scores. However, this linear formulation is too restrictive to reflect reality because it fails to capture the nonlinear dependence of functional data when nonlinear features are present in the data. This study develops a novel FPCA model to uncover the nonlinear structures of functional data. The proposed method can accommodate multivariate functional data observed on different domains, and multidimensional functional data with gaps and holes. To navigate the complexities of spatial structure in multidimensional functional variables, tensor product smoothing and spline smoothing over triangulation are employed, providing precise tools for approximating nonparametric function. Furthermore, an efficient estimation approach and theory are developed when the number of FPCs diverges to infinity. To assess its performance comprehensively, extensive simulations are conducted, and the proposed method is applied to real data from the Alzheimer's Disease Neuroimaging Initiative study, affirming its practical efficacy in uncovering and interpreting nonlinear structures inherent in functional data.

Suggested Citation

  • Zhong, Qingzhi & Song, Xinyuan, 2025. "Functional nonlinear principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:csdana:v:209:y:2025:i:c:s0167947325000453
    DOI: 10.1016/j.csda.2025.108169
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325000453
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jialiang Li & Chao Huang & Zhub Hongtu, 2017. "A Functional Varying-Coefficient Single-Index Model for Functional Response Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1169-1181, July.
    2. Song, Jun & Li, Bing, 2021. "Nonlinear and additive principal component analysis for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    3. Asish Banik & Taps Maiti & Andrew Bender, 2022. "Bayesian penalized model for classification and selection of functional predictors using longitudinal MRI data from ADNI," Statistical Theory and Related Fields, Taylor & Francis Journals, vol. 6(4), pages 327-343, November.
    4. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    5. Raymond K. W. Wong & Yehua Li & Zhengyuan Zhu, 2019. "Partially Linear Functional Additive Models for Multivariate Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 406-418, January.
    6. Hongxiao Zhu & Fang Yao & Hao Helen Zhang, 2014. "Structured functional additive regression in reproducing kernel Hilbert spaces," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 581-603, June.
    7. Reiss, Philip T. & Ogden, R. Todd, 2007. "Functional Principal Component Regression and Functional Partial Least Squares," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 984-996, September.
    8. Zhenhua Lin & Liangliang Wang & Jiguo Cao, 2016. "Interpretable functional principal component analysis," Biometrics, The International Biometric Society, vol. 72(3), pages 846-854, September.
    9. Peter Hall & Mohammad Hosseini‐Nasab, 2006. "On properties of functional principal components analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 109-126, February.
    10. Qingzhi Zhong & Huazhen Lin & Yi Li, 2021. "Cluster non‐Gaussian functional data," Biometrics, The International Biometric Society, vol. 77(3), pages 852-865, September.
    11. Hongtu Zhu & Jianqing Fan & Linglong Kong, 2014. "Spatially Varying Coefficient Model for Neuroimaging Data With Jump Discontinuities," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1084-1098, September.
    12. Clara Happ & Sonja Greven, 2018. "Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 649-659, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Qingzhi & Song, Xinyuan, 2025. "Sparse functional varying-coefficient mixture regression," Journal of Multivariate Analysis, Elsevier, vol. 206(C).
    2. Liu, Yanghui & Li, Yehua & Carroll, Raymond J. & Wang, Naisyin, 2022. "Predictive functional linear models with diverging number of semiparametric single-index interactions," Journal of Econometrics, Elsevier, vol. 230(2), pages 221-239.
    3. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Yuexuan Wu & Chao Huang & Anuj Srivastava, 2024. "Shape-based functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(1), pages 1-47, March.
    5. Yu-Ru Su & Chong-Zhi Di & Li Hsu, 2017. "Hypothesis testing in functional linear models," Biometrics, The International Biometric Society, vol. 73(2), pages 551-561, June.
    6. Dehan Kong & Joseph G. Ibrahim & Eunjee Lee & Hongtu Zhu, 2018. "FLCRM: Functional linear cox regression model," Biometrics, The International Biometric Society, vol. 74(1), pages 109-117, March.
    7. Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
    8. Ali Mahzarnia & Jun Song, 2022. "Multivariate functional group sparse regression: Functional predictor selection," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-22, April.
    9. Kehui Chen & Xiaoke Zhang & Alexander Petersen & Hans-Georg Müller, 2017. "Quantifying Infinite-Dimensional Data: Functional Data Analysis in Action," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 582-604, December.
    10. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    11. Li, Meng & Wang, Kehui & Maity, Arnab & Staicu, Ana-Maria, 2022. "Inference in functional linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    12. Haozhe Zhang & Yehua Li, 2020. "Unified Principal Component Analysis for Sparse and Dense Functional Data under Spatial Dependency," Papers 2006.13489, arXiv.org, revised Jun 2021.
    13. Weice Sun & Jiaqi Xu & Tao Liu, 2025. "Partially Functional Linear Regression Based on Gaussian Process Prior and Ensemble Learning," Mathematics, MDPI, vol. 13(5), pages 1-25, March.
    14. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    15. Febrero-Bande, Manuel & González-Manteiga, Wenceslao & Prallon, Brenda & Saporito, Yuri F., 2023. "Functional classification of bitcoin addresses," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    16. Xiuli Du & Xiaohu Jiang & Jinguan Lin, 2023. "Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 975-1001, September.
    17. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    18. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    19. Wookyeong Song & Hee-Seok Oh & Ying Kuen Cheung & Yaeji Lim, 2024. "Multi-feature clustering of step data using multivariate functional principal component analysis," Statistical Papers, Springer, vol. 65(4), pages 2109-2134, June.
    20. Chenlin Zhang & Huazhen Lin & Li Liu & Jin Liu & Yi Li, 2023. "Functional data analysis with covariate‐dependent mean and covariance structures," Biometrics, The International Biometric Society, vol. 79(3), pages 2232-2245, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:209:y:2025:i:c:s0167947325000453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.