IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v144y2020ics0167947319302543.html
   My bibliography  Save this article

Efficient calculation of the joint distribution of order statistics

Author

Listed:
  • von Schroeder, Jonathan
  • Dickhaus, Thorsten

Abstract

The problem of computing the joint distribution of order statistics of stochastically independent random variables in one- and two-group models is considered. While recursive formulae for evaluating the joint cumulative distribution function of such order statistics exist, their numerical implementation remains a challenging task. This task is tackled by presenting novel generalizations of known recursions. They are utilized to obtain exact results (calculated in rational arithmetic) as well as faithfully rounded results. Finally, some applications in goodness-of-fit testing, step-wise multiple hypothesis testing, and sample size calculation for studies with multiple endpoints are discussed.

Suggested Citation

  • von Schroeder, Jonathan & Dickhaus, Thorsten, 2020. "Efficient calculation of the joint distribution of order statistics," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:csdana:v:144:y:2020:i:c:s0167947319302543
    DOI: 10.1016/j.csda.2019.106899
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947319302543
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2019.106899?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferreira José António & Zwinderman Aeilko H, 2006. "Approximate Power and Sample Size Calculations with the Benjamini-Hochberg Method," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-38, September.
    2. Ferreira José A. & Zwinderman Aeilko, 2006. "Approximate Sample Size Calculations with Microarray Data: An Illustration," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-18, October.
    3. Helmut Finner & Veronika Gontscharuk & Thorsten Dickhaus, 2012. "False Discovery Rate Control of Step-Up-Down Tests with Special Emphasis on the Asymptotically Optimal Rejection Curve," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(2), pages 382-397, June.
    4. Moscovich, Amit & Nadler, Boaz, 2017. "Fast calculation of boundary crossing probabilities for Poisson processes," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 177-182.
    5. Glueck Deborah H & Mandel Jan & Karimpour-Fard Anis & Hunter Lawrence & Muller Keith E, 2008. "Exact Calculations of Average Power for the Benjamini-Hochberg Procedure," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferreira José A. & Berkhof Johannes & Souverein Olga & Zwinderman Koos, 2009. "A Multiple Testing Approach to High-Dimensional Association Studies with an Application to the Detection of Associations between Risk Factors of Heart Disease and Genetic Polymorphisms," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-56, January.
    2. Dean Palejev & Mladen Savov, 2021. "On the Convergence of the Benjamini–Hochberg Procedure," Mathematics, MDPI, vol. 9(17), pages 1-19, September.
    3. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
    4. Dimitrova, Dimitrina S. & Ignatov, Zvetan G. & Kaishev, Vladimir K. & Tan, Senren, 2020. "On double-boundary non-crossing probability for a class of compound processes with applications," European Journal of Operational Research, Elsevier, vol. 282(2), pages 602-613.
    5. Izmirlian, Grant, 2020. "Strong consistency and asymptotic normality for quantities related to the Benjamini–Hochberg false discovery rate procedure," Statistics & Probability Letters, Elsevier, vol. 160(C).
    6. Axel Gandy & Georg Hahn, 2014. "MMCTest—A Safe Algorithm for Implementing Multiple Monte Carlo Tests," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1083-1101, December.
    7. Goldman, Matt & Kaplan, David M., 2018. "Comparing distributions by multiple testing across quantiles or CDF values," Journal of Econometrics, Elsevier, vol. 206(1), pages 143-166.
    8. Thorsten Dickhaus, 2012. "Simultaneous Statistical Inference in Dynamic Factor Models," SFB 649 Discussion Papers SFB649DP2012-033, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    9. Habiger, Joshua D. & Adekpedjou, Akim, 2014. "Optimal rejection curves for exact false discovery rate control," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 21-28.
    10. Farcomeni, Alessio & Pacillo, Simona, 2011. "A conservative estimator for the proportion of false nulls based on Dvoretzky, Kiefer and Wolfowitz inequality," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1867-1870.
    11. Ferreira, J.A. & Nyangoma, S.O., 2008. "A multivariate version of the Benjamini-Hochberg method," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 2108-2124, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:144:y:2020:i:c:s0167947319302543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.