IDEAS home Printed from
   My bibliography  Save this article

Approximate Power and Sample Size Calculations with the Benjamini-Hochberg Method


  • Ferreira José António

    (AMC - University of Amsterdam)

  • Zwinderman Aeilko H

    (University of Amsterdam)


We provide a method for calculating the sample size required to attain a given average power (the ratio of rejected hypotheses to the number of false hypotheses) and a given false discovery rate (the number of incorrect rejections divided by the number of rejections) in adaptive versions of the Benjamini-Hochberg method of multiple testing. The method works in an asymptotic sense as the number of hypotheses grows to infinity and under quite general conditions, and it requires data from a pilot study. The consistency of the method follows from several results in classical areas of nonparametric statistics developed in a new context of "weak" dependence.

Suggested Citation

  • Ferreira José António & Zwinderman Aeilko H, 2006. "Approximate Power and Sample Size Calculations with the Benjamini-Hochberg Method," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-38, September.
  • Handle: RePEc:bpj:ijbist:v:2:y:2006:i:1:n:8

    Download full text from publisher

    File URL:
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
    2. Farcomeni, Alessio & Pacillo, Simona, 2011. "A conservative estimator for the proportion of false nulls based on Dvoretzky, Kiefer and Wolfowitz inequality," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1867-1870.
    3. Ferreira, J.A. & Nyangoma, S.O., 2008. "A multivariate version of the Benjamini-Hochberg method," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 2108-2124, October.
    4. Ferreira José A. & Berkhof Johannes & Souverein Olga & Zwinderman Koos, 2009. "A Multiple Testing Approach to High-Dimensional Association Studies with an Application to the Detection of Associations between Risk Factors of Heart Disease and Genetic Polymorphisms," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-56, January.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:2:y:2006:i:1:n:8. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.