IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v113y2017icp88-99.html

Causal inference with observational data under cluster-specific non-ignorable assignment mechanism

Author

Listed:
  • Kim, Gi-Soo
  • Paik, Myunghee Cho
  • Kim, Hongsoo

Abstract

An estimator of the population average causal treatment effect is proposed for multi-level clustered data from observational studies when the treatment assignment mechanism is cluster-specific non-ignorable. This is motivated from a health policy study to evaluate the cost associated with rehospitalization due to premature discharge. The proposed estimator utilizes cluster-level calibration condition and is shown to be consistent and asymptotically normal. The proposed method is evaluated along with existing methods through simulations and is applied to the health care cost study using California inpatient dataset.

Suggested Citation

  • Kim, Gi-Soo & Paik, Myunghee Cho & Kim, Hongsoo, 2017. "Causal inference with observational data under cluster-specific non-ignorable assignment mechanism," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 88-99.
  • Handle: RePEc:eee:csdana:v:113:y:2017:i:c:p:88-99
    DOI: 10.1016/j.csda.2016.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316302298
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ying Yuan & Roderick J. A. Little, 2007. "Model‐based estimates of the finite population mean for two‐stage cluster samples with unit non‐response," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(1), pages 79-97, January.
    2. Jae Kwang Kim & Yongchan Kwon & Myunghee Cho Paik, 2016. "Calibrated propensity score method for survey nonresponse in cluster sampling," Biometrika, Biometrika Trust, vol. 103(2), pages 461-473.
    3. Ying Yuan & Roderick J. A. Little, 2007. "Parametric and Semiparametric Model-Based Estimates of the Finite Population Mean for Two-Stage Cluster Samples with Item Nonresponse," Biometrics, The International Biometric Society, vol. 63(4), pages 1172-1180, December.
    4. Arpino, Bruno & Mealli, Fabrizia, 2011. "The specification of the propensity score in multilevel observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1770-1780, April.
    5. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    6. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ranjbar, Setareh & Salvati, Nicola & Pacini, Barbara, 2023. "Estimating heterogeneous causal effects in observational studies using small area predictors," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    2. Jeong, Himchan & Valdez, Emiliano A., 2020. "Predictive compound risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 182-195.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harsh Parikh & Carlos Varjao & Louise Xu & Eric Tchetgen Tchetgen, 2022. "Validating Causal Inference Methods," Papers 2202.04208, arXiv.org, revised Jul 2022.
    2. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    3. Hairu Wang & Yukun Liu & Haiying Zhou, 2025. "Score test for unconfoundedness under a logistic treatment assignment model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(4), pages 517-533, August.
    4. Corder Nathan & Yang Shu, 2020. "Estimating Average Treatment Effects Utilizing Fractional Imputation when Confounders are Subject to Missingness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 249-271, January.
    5. Verena Lauber & Johanna Storck, 2016. "Helping with the Kids? How Family-Friendly Workplaces Affect Parental Well-Being and Behavior," Discussion Papers of DIW Berlin 1630, DIW Berlin, German Institute for Economic Research.
    6. Graham, Daniel J., 2025. "Causal inference for transport research," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    7. Nuanpan Lawson & Chris Skinner, 2017. "Estimation of a cluster-level regression model under nonresponse within clusters," METRON, Springer;Sapienza Università di Roma, vol. 75(3), pages 319-331, December.
    8. Zhang, Yuyang & Schnell, Patrick & Song, Chi & Huang, Bin & Lu, Bo, 2021. "Subgroup causal effect identification and estimation via matching tree," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    9. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    10. Alberto Abadie & Anish Agarwal & Raaz Dwivedi & Abhin Shah, 2024. "Doubly Robust Inference in Causal Latent Factor Models," Papers 2402.11652, arXiv.org, revised Oct 2024.
    11. Zhang, Yingheng & Li, Haojie & Ren, Gang, 2025. "Analysing the role of traffic volume as mediator in transport policy evaluation with causal mediation analysis and targeted learning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    12. Antonio R. Linero, 2023. "Prior and posterior checking of implicit causal assumptions," Biometrics, The International Biometric Society, vol. 79(4), pages 3153-3164, December.
    13. Ashesh Rambachan & Neil Shephard, 2019. "When do common time series estimands have nonparametric causal meaning?," Papers 1903.01637, arXiv.org, revised Jan 2025.
    14. Siying Guo & Jianxuan Liu & Qiu Wang, 2022. "Effective Learning During COVID-19: Multilevel Covariates Matching and Propensity Score Matching," Annals of Data Science, Springer, vol. 9(5), pages 967-982, October.
    15. Graham, Bryan S. & Pinto, Cristine Campos de Xavier, 2022. "Semiparametrically efficient estimation of the average linear regression function," Journal of Econometrics, Elsevier, vol. 226(1), pages 115-138.
    16. Verena Lauber & Johanna Storck, 2016. "Helping with the Kids? How Family-Friendly Workplaces Affect Parental Well-Being and Behavior," SOEPpapers on Multidisciplinary Panel Data Research 883, DIW Berlin, The German Socio-Economic Panel (SOEP).
    17. Ying Yuan & Roderick J. A. Little, 2009. "Meta-Analysis of Studies with Missing Data," Biometrics, The International Biometric Society, vol. 65(2), pages 487-496, June.
    18. Masahiro Kato & Takuya Ishihara & Junya Honda & Yusuke Narita, 2020. "Efficient Adaptive Experimental Design for Average Treatment Effect Estimation," Papers 2002.05308, arXiv.org, revised Feb 2025.
    19. Jouni Kuha & Myrsini Katsikatsou & Irini Moustaki, 2018. "Latent variable modelling with non‐ignorable item non‐response: multigroup response propensity models for cross‐national analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1169-1192, October.
    20. Youmi Suk, 2024. "A Within-Group Approach to Ensemble Machine Learning Methods for Causal Inference in Multilevel Studies," Journal of Educational and Behavioral Statistics, , vol. 49(1), pages 61-91, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:113:y:2017:i:c:p:88-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.