Tolerance limits under normal mixtures: Application to the evaluation of nuclear power plant safety and to the assessment of circular error probable
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2016.05.015
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Boldea, Otilia & Magnus, Jan R., 2009.
"Maximum Likelihood Estimation of the Multivariate Normal Mixture Model,"
Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1539-1549.
- Boldea, O. & Magnus, J.R., 2009. "Maximum likelihood estimation of the multivariate normal mixture model," Other publications TiSEM c5d9a58c-6bc2-4098-bfed-d, Tilburg University, School of Economics and Management.
- Boldea, Otilia & Magnus, Jan R., 2009. "Maximum Likelihood Estimation of the Multivariate Normal Mixture Model," MPRA Paper 23149, University Library of Munich, Germany.
- Liu, Huan & Tang, Yongqiang & Zhang, Hao Helen, 2009. "A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 853-856, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ruijie Guan & Yaohua Rong & Weihu Cheng & Zhenyu Xin, 2025. "A Novel Finite Mixture Model Based on the Generalized t Distributions with Two-Sided Censored Data," Annals of Data Science, Springer, vol. 12(1), pages 341-379, February.
- Hany Abdel-Khalik & Dongli Huang & Ugur Mertyurek & William Marshall & William Wieselquist, 2021. "Overview of the Tolerance Limit Calculations with Application to TSURFER," Energies, MDPI, vol. 14(21), pages 1-37, October.
- Shin‐Fu Tsai, 2020. "Approximate two‐sided tolerance intervals for normal mixture distributions," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(3), pages 367-382, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wolfgang Kössler & Hans-J. Lenz & Xing D. Wang, 2024. "Some new invariant sum tests and MAD tests for the assessment of Benford’s law," Computational Statistics, Springer, vol. 39(7), pages 3779-3800, December.
- Ivana Malá, 2015. "Vícerozměrný pravděpodobnostní model rozdělení příjmů českých domácností [Multivariate Probability Model For Incomes of the Czech Households]," Politická ekonomie, Prague University of Economics and Business, vol. 2015(7), pages 895-908.
- Melnykov, Volodymyr & Zhu, Xuwen, 2018. "On model-based clustering of skewed matrix data," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 181-194.
- Montanari, Angela & Viroli, Cinzia, 2011. "Maximum likelihood estimation of mixtures of factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2712-2723, September.
- Fiorentini, Gabriele & Sentana, Enrique, 2023.
"Discrete mixtures of normals pseudo maximum likelihood estimators of structural vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 643-665.
- Sentana, Enrique & Fiorentini, Gabriele, 2020. "Discrete Mixtures of Normals Pseudo Maximum Likelihood Estimators of Structural Vector Autoregressions," CEPR Discussion Papers 15411, C.E.P.R. Discussion Papers.
- Gabriele Fiorentini & Enrique Sentana, 2020. "Discrete Mixtures of Normals Pseudo Maximum Likelihood Estimators of Structural Vector Autoregressions," Working Papers wp2020_2023, CEMFI.
- Shiow-Lan Gau & Jean Dieu Tapsoba & Shen-Ming Lee, 2014. "Bayesian approach for mixture models with grouped data," Computational Statistics, Springer, vol. 29(5), pages 1025-1043, October.
- Wang, Wan-Lun, 2013. "Mixtures of common factor analyzers for high-dimensional data with missing information," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 120-133.
- Hui-Guo Zhang & Chang-Lin Mei, 2017. "Discussion," International Statistical Review, International Statistical Institute, vol. 85(1), pages 38-40, April.
- Giuliano Galimberti & Lorenzo Nuzzi & Gabriele Soffritti, 2021. "Covariance matrix estimation of the maximum likelihood estimator in multivariate clusterwise linear regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 235-268, March.
- Sanae Rujivan & Athinan Sutchada & Kittisak Chumpong & Napat Rujeerapaiboon, 2023. "Analytically Computing the Moments of a Conic Combination of Independent Noncentral Chi-Square Random Variables and Its Application for the Extended Cox–Ingersoll–Ross Process with Time-Varying Dimens," Mathematics, MDPI, vol. 11(5), pages 1-29, March.
- Andrew M. Raim & Nagaraj K. Neerchal & Jorge G. Morel, 2017. "An approximation to the information matrix of exponential family finite mixtures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 333-364, April.
- Diani, Cecilia & Galimberti, Giuliano & Soffritti, Gabriele, 2022. "Multivariate cluster-weighted models based on seemingly unrelated linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
- Kenichi Hayashi, 2018. "Asymptotic comparison of semi-supervised and supervised linear discriminant functions for heteroscedastic normal populations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 315-339, June.
- Xuemei Hu & Xiaohui Liu, 2013. "Empirical likelihood confidence regions for semi-varying coefficient models with linear process errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(1), pages 161-180, March.
- Duchesne, Pierre & Lafaye De Micheaux, Pierre, 2010. "Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 858-862, April.
- Cheng, Ya-Shan & Peng, Chien-Yu, 2012. "Integrated Degradation Models in R Using iDEMO," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 49(i02).
- Wei Dai & Ming Yang & Chaolong Wang & Tianxi Cai, 2017. "Sequence robust association test for familial data," Biometrics, The International Biometric Society, vol. 73(3), pages 876-884, September.
- Yamaguchi, Hikaru & Murakami, Hidetoshi, 2023. "The multi-aspect tests in the presence of ties," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
- Qianchuan He & Yang Liu & Ulrike Peters & Li Hsu, 2018. "Multivariate association analysis with somatic mutation data," Biometrics, The International Biometric Society, vol. 74(1), pages 176-184, March.
- Songhua Tan & Qianqian Zhu, 2022. "Asymmetric linear double autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 371-388, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:103:y:2016:i:c:p:304-315. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/csdana/v103y2016icp304-315.html