IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v101y2016icp174-185.html
   My bibliography  Save this article

Using link-preserving imputation for logistic partially linear models with missing covariates

Author

Listed:
  • Chen, Qixuan
  • Paik, Myunghee Cho
  • Kim, Minjin
  • Wang, Cuiling

Abstract

To handle missing data one needs to specify auxiliary models such as the probability of observation or imputation model. Doubly robust (DR) method uses both auxiliary models and produces consistent estimation when either of the model is correctly specified. While the DR method in estimating equation approaches could be easy to implement in the case of missing outcomes, it is computationally cumbersome in the case of missing covariates especially in the context of semiparametric regression models. In this paper, we propose a new kernel-assisted estimating equation method for logistic partially linear models with missing covariates. We replace the conditional expectation in the DR estimating function with an unbiased estimating function constructed using the conditional mean of the outcome given the observed data, and impute the missing covariates using the so called link-preserving imputation models to simplify the estimation. The proposed method is valid when the response model is correctly specified and is more efficient than the kernel-assisted inverse probability weighting estimator by Liang (2008). The proposed estimator is consistent and asymptotically normal. We evaluate the finite sample performance in terms of efficiency and robustness, and illustrate the application of the proposed method to the health insurance data using the 2011–2012 National Health and Nutrition Examination Survey, in which data were collected in two phases and some covariates were partially missing in the second phase.

Suggested Citation

  • Chen, Qixuan & Paik, Myunghee Cho & Kim, Minjin & Wang, Cuiling, 2016. "Using link-preserving imputation for logistic partially linear models with missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 174-185.
  • Handle: RePEc:eee:csdana:v:101:y:2016:i:c:p:174-185
    DOI: 10.1016/j.csda.2016.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316300469
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang H. & Wang S. & Robins J.M. & Carroll R.J., 2004. "Estimation in Partially Linear Models With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 357-367, January.
    2. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    3. Liang, Hua, 2008. "Generalized partially linear models with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 880-895, May.
    4. Hua Liang & Yongsong Qin & Xinyu Zhang & David Ruppert, 2009. "Empirical Likelihood‐Based Inferences for Generalized Partially Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 433-443, September.
    5. Wang, Lu & Rotnitzky, Andrea & Lin, Xihong, 2010. "Nonparametric Regression With Missing Outcomes Using Weighted Kernel Estimating Equations," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1135-1146.
    6. Guoyou Qin & Zhongyi Zhu & Wing Fung, 2012. "Robust estimation of the generalised partial linear model with missing covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 517-530.
    7. M. C. Paik & R. L. Sacco, 2000. "Matched case–control data analyses with missing covariates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(1), pages 145-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Han & Majid Mojirsheibani, 2021. "On histogram-based regression and classification with incomplete data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 635-662, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takahiro Hoshino & Yuya Shimizu, 2019. "Doubly Robust-type Estimation of Population Moments and Parameters in Biased Sampling," Keio-IES Discussion Paper Series 2019-006, Institute for Economics Studies, Keio University.
    2. Göran Kauermann & Mehboob Ali, 2021. "Semi-parametric regression when some (expensive) covariates are missing by design," Statistical Papers, Springer, vol. 62(4), pages 1675-1696, August.
    3. Zhangong Zhou & Linjun Tang, 2019. "Testing for parametric component of partially linear models with missing covariates," Statistical Papers, Springer, vol. 60(3), pages 747-760, June.
    4. Bravo, Francesco, 2015. "Semiparametric estimation with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 329-346.
    5. Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Papers 2206.08503, arXiv.org, revised Oct 2022.
    6. Linjun Tang & Zhangong Zhou, 2015. "Weighted local linear CQR for varying-coefficient models with missing covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 583-604, September.
    7. Guoyou Qin & Zhongyi Zhu & Wing Fung, 2012. "Robust estimation of the generalised partial linear model with missing covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 517-530.
    8. Francesco Bravo, 2020. "Robust estimation and inference for general varying coefficient models with missing observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 966-988, December.
    9. Jianxuan Liu & Yanyuan Ma & Lan Wang, 2018. "An alternative robust estimator of average treatment effect in causal inference," Biometrics, The International Biometric Society, vol. 74(3), pages 910-923, September.
    10. Baojiang Chen & Xiao-Hua Zhou, 2013. "Generalized Partially Linear Models for Incomplete Longitudinal Data In the Presence of Population-Level Information," Biometrics, The International Biometric Society, vol. 69(2), pages 386-395, June.
    11. M. Hristache & V. Patilea, 2017. "Conditional moment models with data missing at random," Biometrika, Biometrika Trust, vol. 104(3), pages 735-742.
    12. Ning, Zijun & Tang, Linjun, 2014. "Estimation and test procedures for composite quantile regression with covariates missing at random," Statistics & Probability Letters, Elsevier, vol. 95(C), pages 15-25.
    13. Timothy Reese & Majid Mojirsheibani, 2017. "On the $$L_p$$ L p norms of kernel regression estimators for incomplete data with applications to classification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 81-112, March.
    14. Xue, Liugen & Zhang, Jinghua, 2020. "Empirical likelihood for partially linear single-index models with missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    15. Peisong Han, 2014. "Multiply Robust Estimation in Regression Analysis With Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1159-1173, September.
    16. Hu Yang & Huilan Liu, 2016. "Penalized weighted composite quantile estimators with missing covariates," Statistical Papers, Springer, vol. 57(1), pages 69-88, March.
    17. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    18. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    19. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    20. Görg Holger & Marchal Léa, 2019. "Die Effekte deutscher Direktinvestitionen im Empfängerland vor dem Hintergrund des Leistungsbilanzüberschusses: Empirische Evidenz mit Mikrodaten für Frankreich," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 20(1), pages 53-69, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:101:y:2016:i:c:p:174-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.