IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v92y2016icp115-122.html
   My bibliography  Save this article

Reaction front propagation of actin polymerization in a comb-reaction system

Author

Listed:
  • Iomin, A.
  • Zaburdaev, V.
  • Pfohl, T.

Abstract

We develop a theoretical model of anomalous transport with polymerization-reaction dynamics. We are motivated by the experimental problem of actin polymerization occurring in a microfluidic device with a comb-like geometry. Depending on the concentration of reagents, two limiting regimes for the propagation of reaction are recovered: the failure of the reaction front propagation and a finite speed of the reaction front corresponding to the Fisher-Kolmogorov-Petrovskii-Piscounov (FKPP) at the long time asymptotic regime. To predict the relevance of these regimes we obtain an explicit expression for the transient time as a function of geometry and parameters of the experimental setup. Explicit analytical expressions of the reaction front velocity are obtained as functions of the experimental setup.

Suggested Citation

  • Iomin, A. & Zaburdaev, V. & Pfohl, T., 2016. "Reaction front propagation of actin polymerization in a comb-reaction system," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 115-122.
  • Handle: RePEc:eee:chsofr:v:92:y:2016:i:c:p:115-122
    DOI: 10.1016/j.chaos.2016.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007791630265X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weiss, George H. & Havlin, Shlomo, 1986. "Some properties of a random walk on a comb structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 134(2), pages 474-482.
    2. H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag-Leffler Functions and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-51, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhaoyang & Lin, Ping & Wang, Erhui, 2021. "Modeling multiple anomalous diffusion behaviors on comb-like structures," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    2. Liu, Lin & Chen, Siyu & Bao, Chunxu & Feng, Libo & Zheng, Liancun & Zhu, Jing & Zhang, Jiangshan, 2023. "Analysis of the absorbing boundary conditions for anomalous diffusion in comb model with Cattaneo model in an unbounded region," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Virginia Kiryakova & Jordanka Paneva-Konovska, 2024. "Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey," Mathematics, MDPI, vol. 12(2), pages 1-39, January.
    2. Edgardo Alvarez & Carlos Lizama, 2020. "The Super-Diffusive Singular Perturbation Problem," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    3. Pottier, N., 1994. "Analytic study of a model of biased diffusion on a random comblike structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 208(1), pages 91-123.
    4. Sweilam, N.H. & El-Sakout, D.M. & Muttardi, M.M., 2020. "Numerical study for time fractional stochastic semi linear advection diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Arkhincheev, V.E., 2020. "The capture of particles on absorbing traps in the medium with anomalous diffusion: The effective fractional order diffusion equation and the slow temporal asymptotic of survival probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    6. Ravi Agarwal & Snezhana Hristova & Donal O’Regan & Peter Kopanov, 2020. "p -Moment Mittag–Leffler Stability of Riemann–Liouville Fractional Differential Equations with Random Impulses," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    7. Agahi, Hamzeh & Khalili, Monavar, 2020. "Truncated Mittag-Leffler distribution and superstatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    8. Balakrishnan, V. & Van den Broeck, C., 1995. "Transport properties on a random comb," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 217(1), pages 1-21.
    9. Rakesh K. Parmar, 2015. "A Class of Extended Mittag–Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus," Mathematics, MDPI, vol. 3(4), pages 1-14, November.
    10. Nikolai Leonenko & Ely Merzbach, 2015. "Fractional Poisson Fields," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 155-168, March.
    11. Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
    12. Xiong, Xiangtuan & Xue, Xuemin, 2019. "A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 292-303.
    13. Soma Dhar & Lipi B. Mahanta & Kishore Kumar Das, 2019. "Formulation Of The Simple Markovian Model Using Fractional Calculus Approach And Its Application To Analysis Of Queue Behaviour Of Severe Patients," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 117-129, March.
    14. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    15. Katarzyna Górska & Andrzej Horzela, 2021. "Non-Debye Relaxations: Two Types of Memories and Their Stieltjes Character," Mathematics, MDPI, vol. 9(5), pages 1-13, February.
    16. Endre Csáki & Antónia Földes, 2022. "Strong Approximation of the Anisotropic Random Walk Revisited," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2879-2895, December.
    17. Baskin, Emmanuel & Iomin, Alexander, 2011. "Electrostatics in fractal geometry: Fractional calculus approach," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 335-341.
    18. Slawomir Blasiak, 2021. "Heat Transfer Analysis for Non-Contacting Mechanical Face Seals Using the Variable-Order Derivative Approach," Energies, MDPI, vol. 14(17), pages 1-13, September.
    19. Pece Trajanovski & Petar Jolakoski & Ljupco Kocarev & Trifce Sandev, 2023. "Ornstein–Uhlenbeck Process on Three-Dimensional Comb under Stochastic Resetting," Mathematics, MDPI, vol. 11(16), pages 1-28, August.
    20. Zaheer Masood & Muhammad Asif Zahoor Raja & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems," Mathematics, MDPI, vol. 9(17), pages 1-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:92:y:2016:i:c:p:115-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.