Pattern formation and control of spatiotemporal chaos in a reaction diffusion prey–predator system supplying additional food
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2016.01.013
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Lei & Wang, Wenjuan & Xue, Yakui, 2009. "Spatiotemporal complexity of a predator–prey system with constant harvest rate," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 38-46.
- dos S. Silva, F.A. & Viana, R.L. & Lopes, S.R., 2015. "Pattern formation and Turing instability in an activator–inhibitor system with power-law coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 487-497.
- Rao, Feng & Wang, Weiming & Li, Zhenqing, 2009. "Spatiotemporal complexity of a predator–prey system with the effect of noise and external forcing," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1634-1644.
- Pal, S. & Chatterjee, Samrat & Das, Krishna pada & Chattopadhyay, J., 2009. "Role of competition in phytoplankton population for the occurrence and control of plankton bloom in the presence of environmental fluctuations," Ecological Modelling, Elsevier, vol. 220(2), pages 96-110.
- Sahoo, Banshidhar & Poria, Swarup, 2014. "The chaos and control of a food chain model supplying additional food to top-predator," Chaos, Solitons & Fractals, Elsevier, vol. 58(C), pages 52-64.
- Sahoo, Banshidhar & Poria, Swarup, 2015. "Effects of allochthonous inputs in the control of infectious disease of prey," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 1-19.
- Wang, Weiming & Zhang, Lei & Wang, Hailing & Li, Zhenqing, 2010. "Pattern formation of a predator–prey system with Ivlev-type functional response," Ecological Modelling, Elsevier, vol. 221(2), pages 131-140.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ghorai, Santu & Poria, Swarup, 2016. "Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 421-429.
- Azarboni, H. Ramezannejad & Ansari, R. & Nazarinezhad, A., 2018. "Chaotic dynamics and stability of functionally graded material doubly curved shallow shells," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 14-25.
- Liu, Xia & Zhang, Tonghua & Meng, Xinzhu & Zhang, Tongqian, 2018. "Turing–Hopf bifurcations in a predator–prey model with herd behavior, quadratic mortality and prey-taxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 446-460.
- Marick, Sounov & Bhattacharya, Santanu & Bairagi, Nandadulal, 2023. "Dynamic properties of a reaction–diffusion predator–prey model with nonlinear harvesting: A linear and weakly nonlinear analysis," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
- Yang, Ruizhi, 2017. "Bifurcation analysis of a diffusive predator–prey system with Crowley–Martin functional response and delay," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 131-139.
- Bhunia, Bidhan & Ghorai, Santu & Kar, Tapan Kumar & Biswas, Samir & Bhutia, Lakpa Thendup & Debnath, Papiya, 2023. "A study of a spatiotemporal delayed predator–prey model with prey harvesting: Constant and periodic diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
- Wang, Yong & Zhou, Xu & Jiang, Weihua, 2023. "Bifurcations in a diffusive predator–prey system with linear harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bhutia, Lakpa Thendup & Biswas, Samir & Das, Esita & Kar, Tapan Kumar & Bhunia, Bidhan, 2025. "Evolution of Turing patterns of a predator–prey system with variable carrying capacity and harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
- Souna, Fethi & Lakmeche, Abdelkader & Djilali, Salih, 2020. "Spatiotemporal patterns in a diffusive predator-prey model with protection zone and predator harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Mortuja, Md Golam & Chaube, Mithilesh Kumar & Kumar, Santosh, 2021. "Dynamic analysis of a predator-prey system with nonlinear prey harvesting and square root functional response," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
- Zhang, Xue & Zhang, Qing-Ling & Liu, Chao & Xiang, Zhong-Yi, 2009. "Bifurcations of a singular prey–predator economic model with time delay and stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1485-1494.
- Kumar, Sachin & Kharbanda, Harsha, 2019. "Chaotic behavior of predator-prey model with group defense and non-linear harvesting in prey," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 19-28.
- He, Haoming & Xiao, Min & He, Jiajin & Zheng, Weixing, 2024. "Regulating spatiotemporal dynamics for a delay Gierer–Meinhardt model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
- Hossain, Mainul & Pati, N.C. & Pal, Saheb & Rana, Sourav & Pal, Nikhil & Layek, G.C., 2021. "Bifurcations and multistability in a food chain model with nanoparticles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 808-825.
- Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2018. "Stationary distribution and extinction of a stochastic predator–prey model with additional food and nonlinear perturbation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 226-239.
- Mondal, Chirodeep & Kesh, Dipak & Mukherjee, Debasis, 2023. "Global stability and bifurcation analysis of an infochemical induced three species discrete-time phytoplankton–zooplankton model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
- Wu, Ranchao & Zhou, Yue & Shao, Yan & Chen, Liping, 2017. "Bifurcation and Turing patterns of reaction–diffusion activator–inhibitor model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 597-610.
- Thirthar, Ashraf Adnan & Majeed, Salam J. & Alqudah, Manar A. & Panja, Prabir & Abdeljawad, Thabet, 2022. "Fear effect in a predator-prey model with additional food, prey refuge and harvesting on super predator," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
- Owolabi, Kolade M. & Karaagac, Berat, 2020. "Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
- Fasani, Stefano & Rinaldi, Sergio, 2011. "Factors promoting or inhibiting Turing instability in spatially extended prey–predator systems," Ecological Modelling, Elsevier, vol. 222(18), pages 3449-3452.
- Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
- Batabyal, Saikat, 2021. "COVID-19: Perturbation dynamics resulting chaos to stable with seasonality transmission," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
- Song, Li-Peng & Zhang , Rong-Ping & Feng , Li-Ping & Shi, Qiong, 2017. "Pattern dynamics of a spatial epidemic model with time delay," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 390-399.
- Zhao, Qiuyue & Liu, Shutang & Tian, Dadong, 2018. "Dynamic behavior analysis of phytoplankton–zooplankton system with cell size and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 160-168.
- Ghorai, Santu & Chakraborty, Bhaskar & Bairagi, Nandadulal, 2021. "Preferential selection of zooplankton and emergence of spatiotemporal patterns in plankton population," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
- Jeong, Darae & Li, Yibao & Choi, Yongho & Yoo, Minhyun & Kang, Dooyoung & Park, Junyoung & Choi, Jaewon & Kim, Junseok, 2017. "Numerical simulation of the zebra pattern formation on a three-dimensional model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 106-116.
- Shivam, & Singh, Kuldeep & Kumar, Mukesh & Dubey, Ramu & Singh, Teekam, 2022. "Untangling role of cooperative hunting among predators and herd behavior in prey with a dynamical systems approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
More about this item
Keywords
Spatiotemporal pattern; Spatiotemporal chaos; Hopf–Turing region; Additional food;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:85:y:2016:i:c:p:57-67. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.