IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v83y2016icp133-139.html
   My bibliography  Save this article

Binary generalized synchronization

Author

Listed:
  • Koronovskii, Alexey A.
  • Moskalenko, Olga I.
  • Ponomarenko, Vladimir I.
  • Prokhorov, Mikhail D.
  • Hramov, Alexander E.

Abstract

In this paper we report for the first time on the binary generalized synchronization, when for the certain values of the coupling strength two unidirectionally coupled dynamical systems generating the aperiodic binary sequences are in the generalized synchronization regime. The presence of the binary generalized synchronization has been revealed with the help of both the auxiliary system approach and the largest conditional Lyapunov exponent calculation. The mechanism resulting in the binary generalized synchronization has been explained. The finding discussed in this paper gives a strong potential for new applications under many relevant circumstances.

Suggested Citation

  • Koronovskii, Alexey A. & Moskalenko, Olga I. & Ponomarenko, Vladimir I. & Prokhorov, Mikhail D. & Hramov, Alexander E., 2016. "Binary generalized synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 133-139.
  • Handle: RePEc:eee:chsofr:v:83:y:2016:i:c:p:133-139
    DOI: 10.1016/j.chaos.2015.11.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007791500421X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2015.11.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koronovskii, Alexey A. & Moskalenko, Olga I. & Shurygina, Svetlana A. & Hramov, Alexander E., 2013. "Generalized synchronization in discrete maps. New point of view on weak and strong synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 46(C), pages 12-18.
    2. Wu, Xiangjun & Zhu, Changjiang & Kan, Haibin, 2015. "An improved secure communication scheme based passive synchronization of hyperchaotic complex nonlinear system," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 201-214.
    3. Hung, Meei-Ling & Yan, Jun-Juh & Liao, Teh-Lu, 2008. "Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 181-187.
    4. Leon Glass, 2001. "Synchronization and rhythmic processes in physiology," Nature, Nature, vol. 410(6825), pages 277-284, March.
    5. Apostolos Argyris & Dimitris Syvridis & Laurent Larger & Valerio Annovazzi-Lodi & Pere Colet & Ingo Fischer & Jordi García-Ojalvo & Claudio R. Mirasso & Luis Pesquera & K. Alan Shore, 2005. "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature, Nature, vol. 438(7066), pages 343-346, November.
    6. Hung, Yung-Ching & Yan, Jun-Juh & Liao, Teh-Lu, 2008. "Projective synchronization of Chua's chaotic systems with dead-zone in the control input," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 374-382.
    7. Elabbasy, E.M. & Agiza, H.N. & El-Dessoky, M.M., 2006. "Adaptive synchronization of a hyperchaotic system with uncertain parameter," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1133-1142.
    8. O. Moskalenko & A. Hramov & A. Koronovskii & A. Ovchinnikov, 2011. "Effect of noise on generalized synchronization of chaos: theory and experiment," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 82(1), pages 69-82, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Jun & Mi, Lv & Zhou, Ping & Xu, Ying & Hayat, Tasawar, 2017. "Phase synchronization between two neurons induced by coupling of electromagnetic field," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 321-328.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahnazi, Reza & Haghani, Adel & Jeinsch, Torsten, 2015. "Adaptive fuzzy observer-based stabilization of a class of uncertain time-delayed chaotic systems with actuator nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 98-110.
    2. Xu, Yuhua & Zhou, Wuneng & Fang, Jian-an, 2009. "Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lü chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1305-1315.
    3. Ricardo Bioni Liberalquino & Maurizio Monge & Stefano Galatolo & Luigi Marangio, 2018. "Chaotic Itinerancy in Random Dynamical System Related to Associative Memory Models," Mathematics, MDPI, vol. 6(3), pages 1-10, March.
    4. Robert G. Sacco, 2019. "The Predictability of Synchronicity Experience: Results from a Survey of Jungian Analysts," International Journal of Psychological Studies, Canadian Center of Science and Education, vol. 11(3), pages 1-46, September.
    5. Elabbasy, E.M. & El-Dessoky, M.M., 2008. "Synchronization of van der Pol oscillator and Chen chaotic dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1425-1435.
    6. Ge, Zheng-Ming & Chang, Ching-Ming, 2009. "Nonlinear generalized synchronization of chaotic systems by pure error dynamics and elaborate nondiagonal Lyapunov function," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1959-1974.
    7. Belmar-Monterrubio, Ramiro & Quiroz-Ibarra, J. Emilio & Cervantes-Sodi, Felipe, 2023. "A versatile mathematical function for generating stable and chaotic systems: A data encryption application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    8. Alexey V. Rusakov & Dmitry A. Tikhonov & Nailya I. Nurieva & Alexander B. Medvinsky, 2021. "Emergence of Self-Organized Dynamical Domains in a Ring of Coupled Population Oscillators," Mathematics, MDPI, vol. 9(6), pages 1-13, March.
    9. Chen, Mou & Chen, Wen-hua, 2009. "Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2716-2724.
    10. Moskalenko, Olga I. & Koronovskii, Alexey A. & Plotnikova, Anastasiya D., 2021. "Peculiarities of generalized synchronization in unidirectionally and mutually coupled time-delayed systems," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    11. Wang, Yan & Cheng, Wei & Feng, Junbo & Zang, Shengyin & Cheng, Hao & Peng, Zheng & Ren, Xiaodong & Shuai, Yubei & Liu, Hao & Pu, Xun & Yang, Junbo & Wu, Jiagui, 2022. "Silicon photonic secure communication using artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    12. Israr Ahmad & Azizan Bin Saaban & Adyda Binti Ibrahim & Mohammad Shahzad, 2015. "Robust Finite-Time Anti-Synchronization of Chaotic Systems with Different Dimensions," Mathematics, MDPI, vol. 3(4), pages 1-19, December.
    13. Reis, A.S. & Brugnago, E.L. & Viana, R.L. & Batista, A.M. & Iarosz, K.C. & Ferrari, F.A.S. & Caldas, I.L., 2023. "The role of the fitness model in the suppression of neuronal synchronous behavior with three-stage switching control in clustered networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    14. Yu, Nanxiang & Zhu, Wei, 2021. "Event-triggered impulsive chaotic synchronization of fractional-order differential systems," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    15. Gois, Sandra R.F.S.M. & Savi, Marcelo A., 2009. "An analysis of heart rhythm dynamics using a three-coupled oscillator model," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2553-2565.
    16. Aiguo Wu & Shijian Cang & Ruiye Zhang & Zenghui Wang & Zengqiang Chen, 2018. "Hyperchaos in a Conservative System with Nonhyperbolic Fixed Points," Complexity, Hindawi, vol. 2018, pages 1-8, April.
    17. Bitao Shen & Haowen Shu & Weiqiang Xie & Ruixuan Chen & Zhi Liu & Zhangfeng Ge & Xuguang Zhang & Yimeng Wang & Yunhao Zhang & Buwen Cheng & Shaohua Yu & Lin Chang & Xingjun Wang, 2023. "Harnessing microcomb-based parallel chaos for random number generation and optical decision making," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Ausloos, Marcel & Nedic, Olgica & Dekanski, Aleksandar, 2016. "Day of the week effect in paper submission/acceptance/rejection to/in/by peer review journals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 197-203.
    19. Carroll, Thomas L., 2017. "Communication with unstable basis functions," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 766-771.
    20. Ausloos, Marcel & Nedic, Olgica & Dekanski, Aleksandar & Mrowinski, Maciej J. & Fronczak, Piotr & Fronczak, Agata, 2017. "Day of the week effect in paper submission/acceptance/rejection to/in/by peer review journals. II. An ARCH econometric-like modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 462-474.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:83:y:2016:i:c:p:133-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.