IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v438y2005i7066d10.1038_nature04275.html
   My bibliography  Save this article

Chaos-based communications at high bit rates using commercial fibre-optic links

Author

Listed:
  • Apostolos Argyris

    (University of Athens)

  • Dimitris Syvridis

    (University of Athens)

  • Laurent Larger

    (University of Franche-Comté)

  • Valerio Annovazzi-Lodi

    (University of Pavia)

  • Pere Colet

    ((IMEDEA, CSIC-UIB), Campus UIB)

  • Ingo Fischer

    (Darmstadt University of Technology
    Vrije Universiteit Brussel)

  • Jordi García-Ojalvo

    (Universitat Politècnica de Catalunya)

  • Claudio R. Mirasso

    (Universitat de les Illes Balears)

  • Luis Pesquera

    (Instituto de Física de Cantabria (CSIC-UC))

  • K. Alan Shore

    (University of Wales)

Abstract

Meaning from mayhem Chaos is good, if you are looking to send encrypted information across a broadband optical network. The idea that the transmission of light-based signals embedded in chaos can provide privacy in data transmission has been demonstrated over short distances in the laboratory. Now it has been shown to work for real, across a commercial fibre-optic channel in the metropolitan area network of Athens, Greece. The results show that the technology is robust to perturbations and channel disturbances unavoidable under real-world conditions.

Suggested Citation

  • Apostolos Argyris & Dimitris Syvridis & Laurent Larger & Valerio Annovazzi-Lodi & Pere Colet & Ingo Fischer & Jordi García-Ojalvo & Claudio R. Mirasso & Luis Pesquera & K. Alan Shore, 2005. "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature, Nature, vol. 438(7066), pages 343-346, November.
  • Handle: RePEc:nat:nature:v:438:y:2005:i:7066:d:10.1038_nature04275
    DOI: 10.1038/nature04275
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04275
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04275?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Nianqiang & Pan, Wei & Yan, Lianshan & Luo, Bin & Xu, Mingfeng & Jiang, Ning & Tang, Yilong, 2011. "On joint identification of the feedback parameters for hyperchaotic systems: An optimization-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 198-207.
    2. Carroll, Thomas L., 2017. "Communication with unstable basis functions," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 766-771.
    3. Pappu, Chandra S. & Carroll, Thomas L., 2021. "Quasi-FM Waveform Using Chaotic Oscillator for Joint Radar and Communication Systems," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Vieira, Robson & Martins, Weliton S. & Barreiro, Sergio & Oliveira, Rafael A. de & Chevrollier, Martine & Oriá, Marcos, 2021. "Synchronization of a nonlinear oscillator with a sum signal from equivalent oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    5. Belmar-Monterrubio, Ramiro & Quiroz-Ibarra, J. Emilio & Cervantes-Sodi, Felipe, 2023. "A versatile mathematical function for generating stable and chaotic systems: A data encryption application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Rodrigo Méndez-Ramírez & Adrian Arellano-Delgado & Miguel Murillo-Escobar & César Cruz-Hernández, 2019. "Degradation Analysis of Chaotic Systems and their Digital Implementation in Embedded Systems," Complexity, Hindawi, vol. 2019, pages 1-22, December.
    7. Yu, Nanxiang & Zhu, Wei, 2021. "Event-triggered impulsive chaotic synchronization of fractional-order differential systems," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    8. Zhou, Guangye & Li, Chengren & Li, Tingting & Yang, Yi & Wang, Chen & He, Fangjun & Sun, Jingchang, 2016. "Outer synchronization investigation between WS and NW small-world networks with different node numbers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 506-513.
    9. Pappu, Chandra S. & Carroll, Thomas L., 2021. "Unstable basis function for joint radar-communication systems," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    10. Carroll, Thomas L., 2022. "Creating new chaotic signals with reservoir computers," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Aiguo Wu & Shijian Cang & Ruiye Zhang & Zenghui Wang & Zengqiang Chen, 2018. "Hyperchaos in a Conservative System with Nonhyperbolic Fixed Points," Complexity, Hindawi, vol. 2018, pages 1-8, April.
    12. Bitao Shen & Haowen Shu & Weiqiang Xie & Ruixuan Chen & Zhi Liu & Zhangfeng Ge & Xuguang Zhang & Yimeng Wang & Yunhao Zhang & Buwen Cheng & Shaohua Yu & Lin Chang & Xingjun Wang, 2023. "Harnessing microcomb-based parallel chaos for random number generation and optical decision making," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Wang, Yan & Cheng, Wei & Feng, Junbo & Zang, Shengyin & Cheng, Hao & Peng, Zheng & Ren, Xiaodong & Shuai, Yubei & Liu, Hao & Pu, Xun & Yang, Junbo & Wu, Jiagui, 2022. "Silicon photonic secure communication using artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    14. Koronovskii, Alexey A. & Moskalenko, Olga I. & Ponomarenko, Vladimir I. & Prokhorov, Mikhail D. & Hramov, Alexander E., 2016. "Binary generalized synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 133-139.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:438:y:2005:i:7066:d:10.1038_nature04275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.