IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v40y2009i3p1146-1155.html
   My bibliography  Save this article

On the solution of two-dimensional coupled Burgers’ equations by variational iteration method

Author

Listed:
  • Soliman, A.A.

Abstract

By means of variational iteration method the solutions of two-dimensional Burgers’ and inhomogeneous coupled Burgers’ equations are exactly obtained, comparison with the Adomian decomposition method is made, showing that the former is more effective than the later. In this paper, He’s variational iteration method is given approximate solutions that can converge to its exact solutions faster than those of Adomain’s method.

Suggested Citation

  • Soliman, A.A., 2009. "On the solution of two-dimensional coupled Burgers’ equations by variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1146-1155.
  • Handle: RePEc:eee:chsofr:v:40:y:2009:i:3:p:1146-1155
    DOI: 10.1016/j.chaos.2007.08.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907007047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.08.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soliman, A.A., 2005. "Numerical simulation of the generalized regularized long wave equation by He’s variational iteration method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 70(2), pages 119-124.
    2. He, Ji-Huan & Wu, Xu-Hong, 2006. "Construction of solitary solution and compacton-like solution by variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 108-113.
    3. Momani, Shaher & Odibat, Zaid, 2007. "Numerical comparison of methods for solving linear differential equations of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1248-1255.
    4. Sweilam, N.H. & Khader, M.M., 2007. "Variational iteration method for one dimensional nonlinear thermoelasticity," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 145-149.
    5. Doğan Kaya, 2001. "An explicit solution of coupled viscous Burgers' equation by the decomposition method," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 27, pages 1-6, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaennakham, S. & Chuathong, N., 2019. "An automatic node-adaptive scheme applied with a RBF-collocation meshless method," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 102-125.
    2. Veeresha, P. & Prakasha, D.G., 2019. "A novel technique for (2+1)-dimensional time-fractional coupled Burgers equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 324-345.
    3. Zhang, Xu & Jiang, Yanqun & Hu, Yinggang & Chen, Xun, 2022. "High-order implicit weighted compact nonlinear scheme for nonlinear coupled viscous Burgers’ equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 151-165.
    4. Noufe H. Aljahdaly & Ravi P. Agarwal & Rasool Shah & Thongchai Botmart, 2021. "Analysis of the Time Fractional-Order Coupled Burgers Equations with Non-Singular Kernel Operators," Mathematics, MDPI, vol. 9(18), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    2. Xu, Lan, 2009. "The variational iteration method for fourth order boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1386-1394.
    3. Soliman, A.A., 2009. "Exact solutions of KdV–Burgers’ equation by Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1034-1039.
    4. Ali, A.H.A. & Raslan, K.R., 2009. "Variational iteration method for solving partial differential equations with variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1520-1529.
    5. Assas, Laila M.B., 2008. "Variational iteration method for solving coupled-KdV equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1225-1228.
    6. Javidi, M. & Golbabai, A., 2008. "Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 309-313.
    7. Darvishi, M.T. & Khani, F., 2009. "Numerical and explicit solutions of the fifth-order Korteweg-de Vries equations," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2484-2490.
    8. Odibat, Zaid M., 2009. "Exact solitary solutions for variants of the KdV equations with fractional time derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1264-1270.
    9. Yu, Yongguang & Li, Han-Xiong, 2009. "Application of the multistage homotopy-perturbation method to solve a class of hyperchaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2330-2337.
    10. Roman Parovik, 2020. "Mathematical Modeling of Linear Fractional Oscillators," Mathematics, MDPI, vol. 8(11), pages 1-26, October.
    11. Kuru, S., 2009. "Compactons and kink-like solutions of BBM-like equations by means of factorization," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 626-633.
    12. Xu, Lan, 2008. "Variational approach to solitons of nonlinear dispersive K(m,n) equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 137-143.
    13. Karakoç, S. Battal Gazi & Zeybek, Halil, 2016. "Solitary-wave solutions of the GRLW equation using septic B-spline collocation method," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 159-171.
    14. Moghimi, Mahdi & Hejazi, Fatemeh S.A., 2007. "Variational iteration method for solving generalized Burger–Fisher and Burger equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1756-1761.
    15. Wang, Shu-Qiang & He, Ji-Huan, 2008. "Nonlinear oscillator with discontinuity by parameter-expansion method," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 688-691.
    16. Kumar, Rajneesh & Rupender,, 2009. "Effect of rotation in magneto-micropolar thermoelastic medium due to mechanical and thermal sources," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1619-1633.
    17. Zhang, Xu & Jiang, Yanqun & Hu, Yinggang & Chen, Xun, 2022. "High-order implicit weighted compact nonlinear scheme for nonlinear coupled viscous Burgers’ equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 151-165.
    18. Borhanifar, A. & Kabir, M.M. & Maryam Vahdat, L., 2009. "New periodic and soliton wave solutions for the generalized Zakharov system and (2+1)-dimensional Nizhnik–Novikov–Veselov system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1646-1654.
    19. Odibat, Zaid M., 2009. "Computational algorithms for computing the fractional derivatives of functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2013-2020.
    20. Deng, Hongmin & Li, Tao & Wang, Qionghua & Li, Hongbin, 2009. "A fractional-order hyperchaotic system and its synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 962-969.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:3:p:1146-1155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.