IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v29y2006i1p108-113.html
   My bibliography  Save this article

Construction of solitary solution and compacton-like solution by variational iteration method

Author

Listed:
  • He, Ji-Huan
  • Wu, Xu-Hong

Abstract

Variational iteration method is used to construct solitary solutions and compacton-like solutions for nonlinear dispersive equations. The chosen initial solution (trial function) can be in compacton form or in soliton form with some unknown parameters which can be determined in the solution procedure. The compacton-like solution can be converted to solitary solution by suitable choice of a parameter, and vice versa.

Suggested Citation

  • He, Ji-Huan & Wu, Xu-Hong, 2006. "Construction of solitary solution and compacton-like solution by variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 108-113.
  • Handle: RePEc:eee:chsofr:v:29:y:2006:i:1:p:108-113
    DOI: 10.1016/j.chaos.2005.10.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905010799
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.10.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Ji-Huan, 2005. "Limit cycle and bifurcation of nonlinear problems," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 827-833.
    2. Ren, Yu-Jie & Zhang, Hong-Qing, 2006. "A generalized F-expansion method to find abundant families of Jacobi Elliptic Function solutions of the (2+1)-dimensional Nizhnik–Novikov–Veselov equation," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 959-979.
    3. El-Danaf, Talaat S. & Ramadan, Mohamed A. & Abd Alaal, Faysal E.I., 2005. "The use of adomian decomposition method for solving the regularized long-wave equation," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 747-757.
    4. Zhang, Juan & Yu, Jian-Yong & Pan, Ning, 2005. "Variational principles for nonlinear fiber optics," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 309-311.
    5. Wazwaz, Abdul-Majid, 2006. "Compactons, solitons and periodic solutions for some forms of nonlinear Klein–Gordon equations," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 1005-1013.
    6. Wang, Dengshan & Zhang, Hong-Qing, 2005. "Further improved F-expansion method and new exact solutions of Konopelchenko–Dubrovsky equation," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 601-610.
    7. Wazwaz, Abdul-Majid, 2006. "Two reliable methods for solving variants of the KdV equation with compact and noncompact structures," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 454-462.
    8. Wazwaz, Abdul-Majid & Helal, M.A., 2005. "Nonlinear variants of the BBM equation with compact and noncompact physical structures," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 767-776.
    9. Wang, Mingliang & Li, Xiangzheng, 2005. "Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1257-1268.
    10. He, Ji-Huan, 2005. "Application of homotopy perturbation method to nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 695-700.
    11. Zhu, Yonggui & Gao, Xiaoshan, 2006. "Exact special solitary solutions with compact support for the nonlinear dispersive K(m,n) equations," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 487-493.
    12. Zhu, Yonggui & Chang, Qianshun & Wu, Shengchang, 2005. "Exact solitary-wave solutions with compact support for the modified KdV equation," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 365-369.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ji-Huan & Wu, Xu-Hong, 2006. "Exp-function method for nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 700-708.
    2. Odibat, Zaid M., 2009. "Exact solitary solutions for variants of the KdV equations with fractional time derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1264-1270.
    3. (Benn)Wu, Xu-Hong & He, Ji-Huan, 2008. "EXP-function method and its application to nonlinear equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 903-910.
    4. Golbabai, A. & Javidi, M., 2009. "A spectral domain decomposition approach for the generalized Burger’s–Fisher equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 385-392.
    5. Memarbashi, Reza, 2008. "Numerical solution of the Laplace equation in annulus by Adomian decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 138-143.
    6. Borhanifar, A. & Kabir, M.M. & Maryam Vahdat, L., 2009. "New periodic and soliton wave solutions for the generalized Zakharov system and (2+1)-dimensional Nizhnik–Novikov–Veselov system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1646-1654.
    7. Yusufoğlu, Elcin & Bekir, Ahmet, 2008. "Exact solutions of coupled nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 842-848.
    8. Abbasbandy, S., 2007. "A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 257-260.
    9. Moghimi, Mahdi & Hejazi, Fatemeh S.A., 2007. "Variational iteration method for solving generalized Burger–Fisher and Burger equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1756-1761.
    10. Kavitha, L. & Prabhu, A. & Gopi, D., 2009. "New exact shape changing solitary solutions of a generalized Hirota equation with nonlinear inhomogeneities," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2322-2329.
    11. Yusufoğlu, E. & Bekir, A., 2008. "The tanh and the sine–cosine methods for exact solutions of the MBBM and the Vakhnenko equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1126-1133.
    12. Mei, Shu-Li & Du, Cheng-Jin & Zhang, Sen-Wen, 2008. "Asymptotic numerical method for multi-degree-of-freedom nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 536-542.
    13. Sheng, Zhang, 2006. "The periodic wave solutions for the (2+1)-dimensional Konopelchenko–Dubrovsky equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1213-1220.
    14. Bekir, Ahmet & Boz, Ahmet, 2009. "Application of Exp-function method for (2+1)-dimensional nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 458-465.
    15. Mohammed, W.W. & El-Morshedy, M., 2021. "The influence of multiplicative noise on the stochastic exact solutions of the Nizhnik–Novikov–Veselov system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 192-202.
    16. Chun, Changbum, 2007. "Integration using He’s homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1130-1134.
    17. Javidi, M. & Golbabai, A., 2009. "A new domain decomposition algorithm for generalized Burger’s–Huxley equation based on Chebyshev polynomials and preconditioning," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 849-857.
    18. Yusufoğlu (Agadjanov), Elcin, 2009. "Improved homotopy perturbation method for solving Fredholm type integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 28-37.
    19. Batiha, B. & Noorani, M.S.M. & Hashim, I., 2008. "Application of variational iteration method to the generalized Burgers–Huxley equation," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 660-663.
    20. Kuru, S., 2009. "Compactons and kink-like solutions of BBM-like equations by means of factorization," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 626-633.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:29:y:2006:i:1:p:108-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.