IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v36y2008i4p911-919.html
   My bibliography  Save this article

The dynamic complexity of a host–parasitoid model with a lower bound for the host

Author

Listed:
  • Lv, Songjuan
  • Zhao, Min

Abstract

In this paper, the complex dynamics in a discrete-time model of predator–prey interaction based on a lower bound for the host are presented. Local stability analysis of this model is carried out and many forms of complexities are observed using ecology theories and numerical simulation of the global behavior. Furthermore, the existence of a strange attractor and computation of the largest Lyapunov exponent also demonstrate the chaotic dynamic behavior of the model. The numerical results indicate that computer simulation is a useful method for investigating complex dynamic systems.

Suggested Citation

  • Lv, Songjuan & Zhao, Min, 2008. "The dynamic complexity of a host–parasitoid model with a lower bound for the host," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 911-919.
  • Handle: RePEc:eee:chsofr:v:36:y:2008:i:4:p:911-919
    DOI: 10.1016/j.chaos.2006.07.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906007181
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.07.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castro-e-Silva, Alcides & Bernardes, Américo T., 2001. "Analysis of chaotic behaviour in the population dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 301(1), pages 63-70.
    2. Xu, Cailin & Boyce, Mark S., 2005. "Dynamic complexities in a mutual interference host–parasitoid model," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 175-182.
    3. Li, Zhenqing & Wang, Weiming & Wang, Hailing, 2006. "The dynamics of a Beddington-type system with impulsive control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1229-1239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaorong Ma & Qamar Din & Muhammad Rafaqat & Nasir Javaid & Yongliang Feng, 2020. "A Density-Dependent Host-Parasitoid Model with Stability, Bifurcation and Chaos Control," Mathematics, MDPI, vol. 8(4), pages 1-26, April.
    2. Zhao, Min & Wang, Xitao & Yu, Hengguo & Zhu, Jun, 2012. "Dynamics of an ecological model with impulsive control strategy and distributed time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(8), pages 1432-1444.
    3. Zhu, Lili & Zhao, Min, 2009. "Dynamic complexity of a host–parasitoid ecological model with the Hassell growth function for the host," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1259-1269.
    4. Lv, Songjuan & Fang, Zhongmiao, 2009. "The dynamic complexity of a host–parasitoid model with a Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2617-2623.
    5. Zhao, Min & Yu, Hengguo & Zhu, Jun, 2009. "Effects of a population floor on the persistence of chaos in a mutual interference host–parasitoid model," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1245-1250.
    6. Zhao, Min & Lv, Songjuan, 2009. "Chaos in a three-species food chain model with a Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2305-2316.
    7. Zhang, Limin & Zhao, Min, 2009. "Dynamic complexities in a hyperparasitic system with prolonged diapause for host," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1136-1142.
    8. Yu, Hengguo & Zhong, Shouming & Ye, Mao, 2009. "Dynamic analysis of an ecological model with impulsive control strategy and distributed time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(3), pages 619-632.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Hengguo & Zhao, Min & Lv, Songjuan & Zhu, Lili, 2009. "Dynamic complexities in a parasitoid-host-parasitoid ecological model," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 39-48.
    2. Lv, Songjuan & Fang, Zhongmiao, 2009. "The dynamic complexity of a host–parasitoid model with a Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2617-2623.
    3. Wang, Weiming & Wang, Xiaoqin & Lin, Yezhi, 2008. "Complicated dynamics of a predator–prey system with Watt-type functional response and impulsive control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1427-1441.
    4. Wang, Weiming & Wang, Hailing & Li, Zhenqing, 2008. "Chaotic behavior of a three-species Beddington-type system with impulsive perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 438-443.
    5. Wang, Xiaoqin & Wang, Weiming & Lin, Xiaolin, 2009. "Dynamics of a periodic Watt-type predator–prey system with impulsive effect," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1270-1282.
    6. Zhang, Limin & Zhao, Min, 2009. "Dynamic complexities in a hyperparasitic system with prolonged diapause for host," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1136-1142.
    7. Wang, Xiaoqin & Wang, Weiming & Lin, Yezhi & Lin, Xiaolin, 2009. "The dynamical complexity of an impulsive Watt-type prey–predator system," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 731-744.
    8. Yousef, A.M. & Rida, S.Z. & Ali, H.M. & Zaki, A.S., 2023. "Stability, co-dimension two bifurcations and chaos control of a host-parasitoid model with mutual interference," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    9. Xiaorong Ma & Qamar Din & Muhammad Rafaqat & Nasir Javaid & Yongliang Feng, 2020. "A Density-Dependent Host-Parasitoid Model with Stability, Bifurcation and Chaos Control," Mathematics, MDPI, vol. 8(4), pages 1-26, April.
    10. Wang, Hailing & Wang, Weiming, 2008. "The dynamical complexity of a Ivlev-type prey–predator system with impulsive effect," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1168-1176.
    11. Zhao, Min & Lv, Songjuan, 2009. "Chaos in a three-species food chain model with a Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2305-2316.
    12. Zhao, Jiantao & Wei, Junjie, 2009. "Stability and bifurcation in a two harmful phytoplankton–zooplankton system," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1395-1409.
    13. Zhu, Lili & Zhao, Min, 2009. "Dynamic complexity of a host–parasitoid ecological model with the Hassell growth function for the host," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1259-1269.
    14. Zhao, Min & Wang, Xitao & Yu, Hengguo & Zhu, Jun, 2012. "Dynamics of an ecological model with impulsive control strategy and distributed time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(8), pages 1432-1444.
    15. Yu, Hengguo & Zhong, Shouming & Ye, Mao, 2009. "Dynamic analysis of an ecological model with impulsive control strategy and distributed time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(3), pages 619-632.
    16. Wang, Xiaoqin & Wang, Weiming & Lin, Xiaolin, 2008. "Chaotic behavior of a Watt-type predator–prey system with impulsive control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 706-718.
    17. Lv, Songjuan & Zhao, Min, 2008. "The dynamic complexity of a three species food chain model," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1469-1480.
    18. Wang, Xiaoqin & Wang, Weiming & Lin, Xiaolin, 2009. "Dynamics of a two-prey one-predator system with Watt-type functional response and impulsive control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2392-2404.
    19. Kang, Li & Tang, Sanyi, 2016. "The reverse effects of random perturbation on discrete systems for single and multiple population models," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 198-209.
    20. Keesen, F. & Castro e Silva, A. & Arashiro, E. & Pinheiro, C.F.S., 2017. "Simulations of populations of Sapajus robustus in a fragmented landscape," Ecological Modelling, Elsevier, vol. 344(C), pages 38-47.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:36:y:2008:i:4:p:911-919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.