IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v196y2025ics0960077925003327.html
   My bibliography  Save this article

Emergence of antiphase synchronous states in small-size systems with 2-simplex coupling

Author

Listed:
  • Wang, Xuan
  • Li, Haihong
  • Li, Yang
  • Cheng, Haoxin
  • Dai, Qionglin
  • Yang, Junzhong

Abstract

This study investigates the emergence of antiphase fully synchronous states (AFSs) in small-size systems with 1-simplex and 2-simplex interactions. We focus on the influence of system size (N) on the existence of AFSs and reveal that the interplay between the second-harmonic and three-body coupling terms within the 2-simplex, in conjunction with N, significantly impacts the formation of AFSs. Our analysis elucidates that under thermodynamic limits (N→∞), in-phase synchronous state are exclusive. It also reveals that second-harmonic coupling promotes the emergence of AFSs. However, as the number of oscillators N increases, the facilitative effect of second-harmonic coupling on AFSs is diminished, leading to a predominance of IFS over AFSs. We determine the upper limit of N above which AFSs cannot be observed in the 2-simplex system. This research bridges the dynamics from small-size systems to the thermodynamic limit, offering insights into the complex synchronization phenomena in networks of interconnected phase oscillators of higher-order interaction.

Suggested Citation

  • Wang, Xuan & Li, Haihong & Li, Yang & Cheng, Haoxin & Dai, Qionglin & Yang, Junzhong, 2025. "Emergence of antiphase synchronous states in small-size systems with 2-simplex coupling," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925003327
    DOI: 10.1016/j.chaos.2025.116319
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925003327
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacopo Grilli & György Barabás & Matthew J. Michalska-Smith & Stefano Allesina, 2017. "Higher-order interactions stabilize dynamics in competitive network models," Nature, Nature, vol. 548(7666), pages 210-213, August.
    2. Unai Alvarez-Rodriguez & Federico Battiston & Guilherme Ferraz Arruda & Yamir Moreno & Matjaž Perc & Vito Latora, 2021. "Evolutionary dynamics of higher-order interactions in social networks," Nature Human Behaviour, Nature, vol. 5(5), pages 586-595, May.
    3. G. Filatrella & A. H. Nielsen & N. F. Pedersen, 2008. "Analysis of a power grid using a Kuramoto-like model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(4), pages 485-491, February.
    4. L. V. Gambuzza & F. Patti & L. Gallo & S. Lepri & M. Romance & R. Criado & M. Frasca & V. Latora & S. Boccaletti, 2021. "Stability of synchronization in simplicial complexes," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Eyal Bairey & Eric D. Kelsic & Roy Kishony, 2016. "High-order species interactions shape ecosystem diversity," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    6. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zehui & Zhu, Kangci & Wang, Fang, 2025. "Indirect information propagation model with time-delay effect on multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    2. Federico Malizia & Santiago Lamata-Otín & Mattia Frasca & Vito Latora & Jesús Gómez-Gardeñes, 2025. "Hyperedge overlap drives explosive transitions in systems with higher-order interactions," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    3. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Martina Contisciani & Federico Battiston & Caterina De Bacco, 2022. "Inference of hyperedges and overlapping communities in hypergraphs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Ramasamy, Mohanasubha & Devarajan, Subhasri & Kumarasamy, Suresh & Rajagopal, Karthikeyan, 2022. "Effect of higher-order interactions on synchronization of neuron models with electromagnetic induction," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    6. Shang, Yilun, 2022. "Sombor index and degree-related properties of simplicial networks," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    7. Zhang, Ziyu & Mei, Xuehui & Jiang, Haijun & Luo, Xupeng & Xia, Yang, 2023. "Dynamical analysis of Hyper-SIR rumor spreading model," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    8. Federico Malizia & Alessandra Corso & Lucia Valentina Gambuzza & Giovanni Russo & Vito Latora & Mattia Frasca, 2024. "Reconstructing higher-order interactions in coupled dynamical systems," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Yuanzhao Zhang & Maxime Lucas & Federico Battiston, 2023. "Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Chen, Lei & Lu, Juntao & Wang, Yalin & Jia, Chunxiao & Liu, Run-Ran & Meng, Fanyuan, 2025. "Cascading failures with group support in interdependent hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    11. Li, Xueqi & Ghosh, Dibakar & Lei, Youming, 2023. "Chimera states in coupled pendulum with higher-order interaction," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    12. Gerrit Ansmann & Tobias Bollenbach, 2021. "Building clone-consistent ecosystem models," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-25, February.
    13. Zhang, Ke & Gao, Jingyu & Zhao, Haixing & Hu, Wenjun & Miao, Minmin & Zhang, Zi-Ke, 2025. "Uniform transformation and collective degree analysis on higher-order networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 666(C).
    14. Biswas, Dhrubajyoti & Gupta, Sayan, 2024. "Symmetry-breaking higher-order interactions in coupled phase oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    15. Alicia Sanchez-Gorostiaga & Djordje Bajić & Melisa L Osborne & Juan F Poyatos & Alvaro Sanchez, 2019. "High-order interactions distort the functional landscape of microbial consortia," PLOS Biology, Public Library of Science, vol. 17(12), pages 1-34, December.
    16. Li, Shumei & Yang, Chun & Yao, Zhiwen, 2024. "Simplicial epidemic model with individual resource," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 647(C).
    17. Ma, Ning & Yu, Guang & Jin, Xin, 2024. "Dynamics of competing public sentiment contagion in social networks incorporating higher-order interactions during the dissemination of public opinion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    18. Lamata-Otín, Santiago & Reyna-Lara, Adriana & Gómez-Gardeñes, Jesús, 2024. "Integrating Virtual and Physical Interactions through higher-order networks to control epidemics," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    19. Li, Shuyu & Li, Xiang, 2023. "Influence maximization in hypergraphs: A self-optimizing algorithm based on electrostatic field," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    20. Lu, Yikang & Dai, Hui & Tan, Huaiyu & Duan, Xiaofang & Shi, Lei & Park, Junpyo, 2025. "Enhancement of persistence in the rock-paper-scissors dynamics through higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 487(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925003327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.